
On Building Constructive Formal Theories of
Computation

Noting the Roles of Turing, Church, and Brouwer
Robert L. Constable
Cornell University

Abstract—In this article I will examine a few key concepts and
design decisions that account for the high value of implemented
constructive type theories in computer science. I’ll stress the
historical fact that these theories, and the proof assistants that
animate them, were born from a strong partnership linking
computer science, logic, and mathematics.

I will recall how modern type theory researchers built on
deep insights from the earliest pioneers: Turing – the first
computer scientist, Church – the patriarch of logic in computer
science, and Brouwer – a singular pioneer of intuitionism and
constructive mathematics. They created solid intellectual ground
on which to build a formal implemented constructive theory of
computation whose influence will be felt well beyond computing
and information science alone. All generations of constructive
type theory researchers since this beginning have had leaders
from all three disciplines.

Much of the seminal modern work creating these type theories
and their proof assistants was presented in LICS proceedings, and
LICS could be a natural home for future work in this flourishing
area which is the epitome of logic in computer science.

Index Terms—attack-tolerance, automated reasoning, Coq,
completeness, FLP theorem, intuitionistic logic, logic of events,
Nuprl, proof assistants, propositions-as-types, protocol synthesis

I. I NTRODUCTION

A. Background

Computer scientists report a growing influence ofimple-
mented constructive type theories. This is due in part to
their role in programming language research, operating system
verification, fault-tolerant and attack-tolerant protocol syn-
thesis, access control systems, security research, and other
core computing topics. These implemented theories embody
deep and compelling discoveries from computer science, logic,
and mathematics that become tightly entangled in the imple-
mentations. Such theories have the potential to provide an
integratedfoundational theory of computationsuitable to all
three disciplines and beyond. Current circumstances portend
an increased effort to enrich these theories and improve their
implementations in proof assistants that become widely shared
distributed resources “residing in the clouds”.

One of many examples of a growing influence of construc-
tive type theories is that at the premier conferences on pro-
gramming languages such as POPL we see results established

using proof assistants like Coq or HOL or Twelf; and some
researchers claim that it is becoming a requirement for certain
kinds of results in programming language (PL) research that
they be formally proved and checked by a proof assistant. In
other meetings we see protocol correctness [14] established by
Nuprl and properties of the seL4 microkernel verified using
Isabelle-HOL [36] and certified system code using Coq [80].
The Coq and Nuprl proof assistants are based on related
versions of constructive type theory, theCalculus of Inductive
Constructionsfor Coq [10], [75] andComputational Type
Theory(CTT) [26], [2] for Nuprl.1 There is also a constructive
version of Isabelle-HOL type theory [9], [8] whose semantics
is given using Intuitionistic ZF set theory [22]. One of the
most notable verifications using a proof assistant is Gonthier’s
proof of the Four Color Theorem in Coq [39]. Coq and Nuprl
were both used in settling open mathematical problems [39],
[71], and HOL is being used to formalize and check Halles
proof of the Kepler conjecture [83]. The Minlog system [7]
has been used in very interesting proof transformations. These
results depend on advanced proof technology, and at the same
time they illustrate some of the deep intellectual contributions
of computer science – predicted by AI researchers in the 50’s
and examined by philosophically trained logicians who tie this
work to enduring questions of epistemology [34], [35], [41].

I believe that research investments by industry, governments,
and universities will expand the role of constructive type
theories, deepen the science behind them, and encourage their
implementation in the cloud. New mathematical and logical
results, e.g. Homotopy Type Theory [87], [5], [57], will not
only make the theories more expressive, they will also help
us implement them better. Research in programming lan-
guages and programming environments could makecorrect-
by-construction programming with dependent typesstandard
[16]. Proof assistants will share formal theories and integrate
other formal methods tools into an advanced proof technology
built around them. The inherently compositional nature of
proof assistant based formal methodswill multiply the value
of proof assistants as they share theories. Critical applications
will justify adding computing power to the proof assistants;
that power will extend their reach deeper into science and

1For example, both theories use the results of Mendler [69], [70] on
recursive types, both are based on propositions-as-types, both use the LCF
tactic mechanism [40], and the systems share some implementation elements.



mathematics. We will also apply these theories and their proof
assistants to themselves to significantly improve their imple-
mentations, illustrating the autocatalytic nature of research in
this field.

B. Organization

In the next section I present some of the most important
basic principles behind the design of Computational Type
Theory (CTT) [2], the name we gave to the version of
constructive type theory implemented by Nuprl as of 2006.
This theory includes the types needed to build a theory of
classes and objects as reported in work with Jason Hickey [46]
and Alexei Kopylov [56] as well as work on the Formal Digital
Library (FDL) that is the data base of definitions, tactics, and
theorems used by Nuprl. Since the 2006 publication, we have
taken steps to add distributed processes to the computation
system and the type ofprocessesandeventsto the logic [13].
We view this as extending the notion ofproofs as programs
[23], [6], [42] to that ofproofs as processes.

II. BASIC PRINCIPLES

A. The computation system and its data

Constructive type theories include a programming language.
For ITT82 [65], [74] and CTT [26], [2] this is anapplied
untyped lambda calculusbased on Church’spure untyped
lambda calculus[19], [20]. Instead of encoding into pure
lambda terms the operators such as pairs and tags as well as
data, e.g. Booleans, numbers, lists etc, these are added as new
primitives. The computation rules are typically presented in
the style of Plotkin’s structured operational semantics [77]. An
applied untyped lambda calculus with atoms and lists became
the basis for Lisp [67] (in which Nuprl is implemented).

As Church, Kleene and Rosser investigated the untyped
lambda calculus in the 30s, Church came to believe it captured
the intuitive notion ofeffective computability, but Gödel and
others were not convinced until they saw that the system
was equivalent to Turing machines. We now say that the
lambda calculus isTuring complete, recognizing the intuitive
clarity of Turing’s formulation [85]. The CIC type theory starts
with an applied typed lambda calculus and is thus a theory
based ontotal computable functionswhereas CTT is based on
partial computable functions. This difference was studied in
detail in work with Smith [27] and Crary [28]. An efficient
implementation of this underlying programming language
guarantees that the type theory can express algorithms well
enough for serious practical work. In the case of Nuprl, this
efficiency is obtained by applying a series of transformations
to the primitive evaluator, adding closures, continuations, and
defunctionalization to end up with an efficient state machine
as described by Danvy and Nielsen [30]. This and other
techniques from functional programming provide a principled
path to efficient evaluation.

a) Church’s Thesis:None of CIC, CTT nor ITT adopt
Church’s thesis, and CTT isopen-endedby design [24], [50].

If it is necessary to reason about Turing computable functions,
they are defined as an explicit subtype.2

One of the major advantages of using an untyped com-
putation system is that it can express the most efficient and
compact algorithms. For example, theY combinators are avail-
able for expressing arbitrary recursive algorithms. In Nuprl
we use these combinators as realizers forefficient induction
principles, a technique that Doug Howe used to great effect in
his work on the Girard paradox [48]. For instance, the realizer
for the following efficient induction principle is given by aY
combinator that is proved to be in the type of the induction
principle: (P (0)&∀n : N.P (n÷ 4) ⇒ P (n)) ⇒ ∀n : N.P (n).
This is realized by a recursive function, sayf(x) = if x =
0 then b else h(x, f(x÷ 4)).

B. Computational equality

Reasoning about untyped terms is critical in automated
reasoning. In Nuprl this is based on Howe’s results on equality
in lazy computation systems [49]. We writea ∼ b whena is
computationally equal tob and use the generalized rewrite
package [33] that Paul Jackson wrote [52], [53] based on
Paulson’s rewrite package from Isabelle [76]. One of the most
common rewrites is to replace a term by one computationally
equal to it. This is an effective way to establish properties of
efficient realizers, by showing them computationally equal to
the primitive realizers.

C. Typing judgments

If we let fix be a simple fixed point combinator with
the reduction rule thatfix(λ(f.b(f))) reduces in one step to
b(fix(λ(f.b(f)))), then to use

fix(λ(f.λ(x. if x = 0 then b else h(x, f(x÷ 4)))))

as a realizer for the above efficient induction formula, we
only need to prove that it belongs to the type of the formula
according to the propositions as types principle and the PER
semantics based on it [3], [44]. This involves finding the right
termsb and h. In CTT and ITT this is done by proving the
typing judgmentby ordinary induction. It is not established by
a type checking algorithm because in general type judgments
are undecidable. Here we see a contrast between CTT and
CIC that would need to be resolved in any unified theory. One
plausible unification is to employ a type checking algorithm
and alsoallow other type judgments to be established by proof.
This is essentially what happens in practice in Nuprl because
the normal “auto-tactic” proves a very large percentage of the
typing judgments.

D. Logic

It is well known that the implemented constructive type
theories are based on thepropositions as types principle. This
fundamental logical principle is used to support the extraction

2There are researchers who believe that Martin-Löf intended to adopt
Church’s thesis in ITT based on his writings of the time. I don’t know if
that is the case, but for CTT we never intended to add a version of Church’s
thesis.



of programs from proofs. I regard this principle as one of
the most basic ideas in logic – yet it does not have a standard
name. Computer scientists, especially in the LICS community,
like to call this idea theCurry-Howard isomorphism. Indeed
that is the title of one of the comprehensive books on the
subject, Lectures on the Curry-Howard Isomorphism, [81].
However, that book cites over twenty contributors to the
concept, from logic, computer science, and mathematics. The
origin of the name might stem from Martin-Löf’s writings
[65], [66] in part because he was very influenced by Howard
[47] when he visited him in the late 60’s.

The idea occurs clearly as an isomorphism in the book
Combinatory Logic [29] by Curry and Feys, pages 312-
315. However, the central idea goes back to Brouwer
1907 [86], [18], and among logicians it is called the
Brouwer/Heyting/Kolmogorov orBHK semanticsfor intuition-
istic logic, see [84], [82]. N.G. deBruijn called it propositions
as types (PAT) orproofs as terms(PAT), and he used the
idea for all Automath theories [32], [73] which are classical.
It seems that he learned this from Heyting when they were
colleagues in Amsterdam. The connection from early Brouwer
to recursive realizability was made by Kleene already in 1945
[54] and extended in the bookFoundations of Intuitionistic
Mathematicswith Vesley in 1965 [55]. Let’s call this semantics
Brouwer realizabilitywhen indexings of partial recursive func-
tions are not used. I suggested the nameevidence semantics
when I showed that the principle could be applied to classical
logic using oracle computations (calledmagic) to justify the
law of excluded middle [24], [50], [51], and the resulting
semantics is classically equivalent to Tarski’s semantics for
first-order logic.

b) Completeness problem:The BHK semantics was
problematic because logicians could not prove completeness
for Intuitionistic First-Order Logic (iFOL) relative to the BHK
semantics even though Beth [11] made a valiant effort in 1947
which gave us tableaux systems.

The most faithful constructive completeness theorem for
intuitionistic validity is by Friedman in 1975 (presented in
[84]), and there is a classical proof for the Brouwer-Heyting-
Kolmogorov semantics for intuitionistic first-order logic by
Artemov usingprovability logic [4]. Results suggest how sub-
tle completeness theorems are since constructive completeness
with respect to full intuitionistic validity contradicts Church’s
Thesis [58], [84] and impliesMarkov’s Principleas well [68].3

My colleague Mark Bickford and I have made progress on
this problem recently by observing that intuitionistic complete-
ness is not the right notion. It turns out that the proof rules
for iFOL yield a stronger semantic notion,uniform validity,
because the realizers are all polymorphic terms. In a submitted
article “Intuitionistic completeness of first-order logic” [21],
we established completeness forintuitionistic first-order logic,
iFOL, by showing that a formula is provable if and only if
its embedding into minimal logic,mFOL, is uniformly valid

3Church’s Thesis was not an issue for us because we do not assume it in
CTT, our metalogic.

under theBrouwer Heyting Kolmogorov (BHK)semantics, the
intended semantics of both iFOL and mFOL. Our proof is
intuitionistic, and it provides an effective procedurePrf that
converts uniform minimal evidence into a formal first-order
proof.
Theorem: Completeness of Minimal First-
Order Logic : Given a valid evidence structure,
h̄ : H̄(D, R̄) |= G(D, R̄), evd(h̄), with uniform evidence
evd(h̄) over the domainD and atomic relations̄R for a logical
formula G(D, R̄) in first-order minimal logic, we can build
a minimal logic proof,pf(h̄), of the goal formulaG(D, R̄),
from hypotheses̄H, that is,h̄ : H̄ `1

min G(D, R̄) by pf(h̄).
Moreover, from the proof of this completeness theorem, we

can extract a proof building procedurePrf that yields the proof
pf(h̄). We have implementedPrf . Uniform validity is defined
using the intersection operator as a universal quantifier over the
domain of discourse and atomic predicates. Formulas ofiFOL
that are uniformly valid are also intuitionistically valid, but not
conversely. Our strongest result requires the Fan Theorem; it
can also be proved classically by showing thatPrf terminates
using König’s Theorem.

We intuitionistically prove completeness foriFOL as fol-
lows. Friedman showed thatiFOL can be embedded in mini-
mal logic (mFOL) by his A-transformation, mapping formula
F to FA. If F is uniformly valid, then so isFA, and by our
completeness theorem, we can find a proof ofFA in minimal
logic. Then we intuitionistically proveF from FFalse, i.e. by
taking False for A and for⊥ of mFOL. This result resolves
an open question posed by Beth in 1947.
Corollary : Completeness of Intuitionistic First-Order
Logic: F is a uniformly valid formula of iFOL if and only if
it is provable in iFOL.

III. I MPLEMENTATIONS

We look briefly at some of the key ideas and issues in the
implementations of constructive type theories. This is a realm
in which the computer scientists were indispensable both to the
design of the theories and to their deployment and application.
On the other hand, the task could not be separated from logical
issues nor from the norms of mathematical practice.

A. LCF-style tactics

It is noteworthy that the Coq, HOL, Isabelle, and Nuprl
proof assistants are all implemented using the tactic mech-
anism from the LCF system (Logic for Computable Func-
tions) reported in the bookEdinburgh LCF [40], subtitled
“A Mechanised Logic of Computation”. This means that
proof automation is based on tactics and tacticals and goal
directed proof. Tactics generateprimitive proofs that can be
independently checked by relatively simple programs. These
tactic-based proversalso integrate various decision procedures
and fully automatic provers, JProver [78], which generate
primitive proofs when they succeed.

The power of the tactic mechanism comes from its abstract
and heuristic nature. Tactics are not guaranteed to find a proof,
they search and they guess and they try. On the other hand,



they need to be stable enough to replay when they succeed.
Tactics can be assembled into “super-tactics” that start to look
like automatic theorem provers for certain classes of results
[12].4 In Nuprl there is a very powerful tactic called MA-
Auto that can often finish a proof. In Coq a corresponding
super tactic is called “Crush.” In addition, special super-tactics
are assembled for domain specific verification. These tactics
are designed to completely solve the task they are designed
for, and because they work most of the time, they are allowed
to run for many hours.

B. Programming Environments

Environments for using constructive proof assistants also
provide evaluators and compilers. Formal Digital Library
(FDL) capabilities are especially important once the formal
library is very large with many users. It is important to know
whether a concept is already defined or a theorem already
proved by another user (or oneself in the past). Jason Hickey
built a logical programming environment, LPE, and a proof
assistant for CTT called MetaPRL [46]. MetaPRL is a logical
framework [45] in which theories can be formally related, e.g.
using Aczel’s implementation of CZF [1] into CTT. Logical
frameworks like MetaPRL allow users to share related theories
and share results [37], [72]. They are important to the study
of Mathematical Knowledge Management which is a topic
that will become increasingly important as the proof assistants
tackle larger tasks and need to cooperate. On this topic it
will be essential for computer scientists, information scientists,
logicians and mathematicians to cooperate.

The Nuprl FDL includes an on-going development of
constructive analysis following closely the bookConstructive
Analysis[15] by Bishop and Bridges which extends Bishop’s
1967 book that brought the new generation of constructive
mathematicians including Bridges and Richman [17] into the
partnership. They reexamined ties to Brouwer. Bishop inspired
logicians to find a formalism for his mathematics, including
Martin-Löf [65] and Scott [79] and computer scientists like me
striving to design implementable formalisms for mathematics
and the theory of computation [23].

IV. FORMAL DISTRIBUTED COMPUTING MODEL

Ever since our commercialized work on the Ensemble
distributed system [63], [59], we have devoted more effort
to verifying and synthesizing distributed protocols. This has
led us to model distributed computing concepts and primitives
in the constructive type theory of Nuprl. Our first efforts
used the IOA model of Lynch [64] and the logic of events
[14] derived from a variant of the IOA model. Since then
we have made the process model progressively more abstract
and now are using our General Process Model [13]. Here is
a brief overview of this model including key concepts for
reasoning aboutevent structurescreated from computations
in this model. Asystemconsists of a set ofcomponents. Each
component has alocation, an internal part, and anexternal

4The termsuper-tacticwas used by Miriam Leeser and her group [61] and
applied by Bickford to PCL as well [31], [12].

part. There may be more than one component with the same
location. The internal part of a component is aprocess—its
program and internal (possibly hidden) state. The external part
of a component is its interface with the rest of the system. Here
the interface is a list ofmessages, containing eitherdata or
processes and labeled with the location of the recipient. The
“higher order” ability to send a message containing a process
allows such systems to grow by “forking” or “bootstrapping”
new components. A system executes as follows. At each step,
the environmentmay choose and remove a message from the
external component. If the chosen message is addressed to a
location that is not yet in the system, then a new component
is created at that location, using a givenboot-process, and an
empty external part.

Each component at the recipient location receives the mes-
sage as input and computes a pair that contains a process
and an external part. The process becomes the next internal
part of the component, and the external part is appended
to the current external part of the component. A potentially
infinite sequence of steps, starting from a given system and
using a given boot-process, is arun of that system. From a
run of a system we derive an abstraction of its behavior by
focusing on theeventsin the run. The events are the pairs,
〈x, n〉, of a location and a step at which locationx gets an
input message at stepn, i.e. information is transferred. Every
event has a location, and there is a naturalcausal-ordering
on the set of events, the ordering first considered by Lamport
[60]. This allows us to define anevent-ordering, a structure,
〈E, loc, <, info〉, in which the causal ordering< is transitive
relation onE that is well-founded, and locally-finite (each
event has only finitely many predecessors).5 Also, the events
at a given location are totally ordered by<. The information,
info(e), associated with evente is the message input toloc(e)
when the event occurred. We have found that requirements for
distributed systems can be expressed as (higher-order) logical
propositions about event-orderings. To illustrate this, I present
a very simple example ofconsensusin a group of processes.

c) A simple consensus protocol: TwoThirds:Each par-
ticipating component will be a member of some group and
each group has a name,G. The groups haven = 3f + 1
members, and they are designed to toleratef failures. When
any component in a groupG receives a message〈[start ], G〉
it starts the consensus protocol whose goal is to decide on
values received by the members fromclients.

We assume that once the protocol starts, each process has
received a valuevi or has a default non-value. The simple
TwoThirds consensus protocol is this: A processPi that has a
valuevi of typeT starts anelectionto choose a value of type
T (with a decidable equality) from among those received by
members of the group from clients.
Begin
Until decidei do:
1. Increment eli; 2. Broadcast vote 〈eli, vi〉 to G;
3. Collect in list Msg i 2f + 1 votes of electioneli;

5These event structures and orderings are similar in spirit to Winskel’s [88].



4. Choosevi := f(Msg i);
5. If Msg i is unanimousthen decidei := true
End

The elections are identified by natural numbers,eli initially
0, and incremented by 1, and a Boolean variabledecidei is
initially false. The function from lists of values,Msg i to a
value is a parameter of the protocol. If the typeT of values
is Boolean, we can takef to be the majority function.

We describe protocols like this by classifying the events
occurring during execution. In this algorithm there areInput,
Vote, Collect, and Decide events. The components can rec-
ognize events in each of theseevent classes(in this example
they could all have distinctive headers), and they can associate
information with each event (e.g.〈ei, vi〉 with Vote, Msg i

with Collect, andf(Msg i) with Decide). Events in some
classescauseevents with related information content in other
classes, e.g. Collect causes a Vote event with valuef(Msg i).
In general, anevent classX is function on events in an event
ordering thateffectively partitionsevents into two sets,E(X)
andE−E(X), and assigns a valueX(e) to eventse ∈ E(X).

Example 1. Consensus specification

Let P andD be the classes of events with headerspropose
and decide, respectively. Then thesafety specificationof a
consensus protocol is the conjunction of two propositions
on (extended) event-orderings, calledagreement(all decision
events have the same value) andresponsiveness(the value
decided on must be one of the values proposed):

∀e1, e2 : E(D). D(e1) = D(e2)
∀e : E(D). ∃e′ : E(P ). e′ < e ∧ D(e) = P (e′).

We can prove safety and the followingliveness property
about TwoThirds. We say that activity in the protocolcontracts
to a subsetS of exactly 2f + 1 processes if these processes
all vote in electionn say atvt(n)1, ..., vt(n)k for k = 2f + 1
and collect these votes atc(n)1, ..., c(n)k, and all vote again
in election n + 1 at vt(n + 1)1, ..., vt(n + 1)k, and collect
at c(n + 1)1, ..., c(n + 1)k. In this case, these processes inS
all decide in roundn + 1 for the value given byf applied
to the collected votes. This is alivenessproperty. If exactly
f processes fail, then the activity of the groupG contracts
to someS and decides. This fact shows that the TwoThirds
protocol isnon-blocking, i.e. from any state of the protocol,
there is a path to a decision.

A. Realizers and Strong Realizers

If ψ is a proposition about event orderings, e.g. liveness, we
say that a systemrealizesψ, if the event-ordering of any run
of the system satisfiesψ. We extend the “proofs-as-programs”
paradigm to “proofs-as-processes” for distributed computing
by making constructive proofs that requirements arerealizable.
For compositional reasoning, it is desirable to create astrong
realizer of requirementψ—a system that realizesψ in any
context. Formally, systemS is a strong realizer ofψ if the
event-ordering of any run of a systemS′ such thatS ⊆ S′,

satisfiesψ. If S1 is a strong realizer ofψ1 andS2 is a strong
realizer ofψ2, thenS1 ∪ S2 is a strong realizer ofψ1 ∧ ψ2.
One of our main tools is that propagation rules like those
used in the consensus example have strong realizers. A realizer

for a propagation ruleA
f⇒ B@g is a set of components

that can each, as a (computable) function of the history of
inputs at its location, recognize, and compute the valuev of
events in classA that occur there and send messages that will
eventually result in an events in classB with value f(v) at
each location ing(v). We call the classesA that can be so
recognizedprogrammable.

V. ATTACK TOLERANCE

We assume that deployed systems will be attacked. We
can protect protocols by formally generating a large number
of logically equivalent variants, stored in anattack response
library. Each variant uses distinctly different code which a
system under attack can installon-the-flyto replace compro-
mised components. Each variant is known to be equivalent and
correct. We express threatening features of the environment
formally and discriminate among the different types. We can
do this in our new GPM model becausethe environment is an
explicit component about which we can reason.

A. Synthetic Code Diversity

We introduce diversity at all levels of the formal code
development (synthesis) process starting at a very high level
of abstraction. For example, in the TwoThirds protocol, we
can use different functionsf , alter the means of collecting
Msg i, synthesize variants of the protocol, alter the data types,
etc. We are able to create multiple provably correct versions
of protocols at each level of development, e.g. compiling
TwoThirds into Java, Erlang, andF#. The higher the starting
point for introducing diversity, the more options we can create.
We can also inject code diversity into the fully automatic ver-
ification of authentication protocols inProtocol Composition
Logic (PCL) [31] implemented in Nuprl.

d) The Environment as Adversary:The standard version
of the Fisher/Lynch/Paterson theorem [38] is that no determin-
istic algorithm can solve the consensus problem for a group
of process in which at least one process might fail. This is a
negative statement, producing only a contradiction, yet implicit
in all proofs is animagined constructionof a nonterminating
execution in which no process decides, they “waffle” endlessly.
That imagined execution is an interesting object, displaying
what can go wrong in trying to reach consensus. The hypo-
thetical execution is used to guide thinking about consensus
protocol design. In light of that use, a natural question about
the classical proofs of FLP is whether the hypothetical infinite
waffling execution could actually be constructed from any
purported consensus protocolP; that is, givenP, can we
exhibit an algorithmα such that for any natural number
n, α(n) is the n-th step of the indecisive computation? It
appears that no such explicit construction could be carried
out following the method of the classical proof because there
isn’t enough information given with the protocol, and the



key concept in the standard proofs, the notion ofvalence
(univalenceand bivalence), is not defined effectively, i.e. it
requires knowing the results of all possible executions. Only
a proof can show that it will run forever.

The key to being able to build the nonterminating execution
is to provide more information, which was done in [25]
by introducing the notion ofeffective nonblocking. Effective
nonblocking is a natural concept when protocols are verified
using constructive logic.

P is called effectively nonblockingif from any reachable
global states of an execution ofP and any subsetQ of n−
f non-failed processes,we can findan executionα from s
using Q and a processPα in Q which decides a valuev.
Constructively this means that we have acomputable function,
wt(s, Q), which produces an executionα and a statesα in
which a process, sayPα decides a valuev.

Theorem (CFLP): Given any deterministic effectively non-
blocking consensus procedureP with more than two processes
and tolerating a single failure, we can effectively construct
a nonterminating execution of it. Let the function produced
by this proof beflpc, then for a consensus procedure, say
theTwoThirdsprotocol given above and its nonblocking proof
nb, we have that the environment can useflpc(nb) to create
a message-order attack that will prevent TwoThirds from
deciding.

What is noteworthy and perhaps alarming about this con-
structive result is that it says that if we take the trouble to prove
that a consensus algorithm is non-blocking and correct, then
we provide an adversary who knows the proof and controls
the network (as in a data center), an undefeatable denial of
service attack on a system that uses the protocol. This is not
what we expect from protocol verification!

VI. CONCLUSION

I believe that the core partnership driving the develop-
ment of implemented constructive type theories remains vital
and productive and will be reinforced and strengthened by
increasingly important applications, new discoveries about
type theory in general, and newprover-assisted programming
languagesbuilt to exploit the richness of the theories and the
capabilities of their proof assistants.

REFERENCES

[1] Peter Aczel. The type theoretic interpretation of constructive set theory.
In A. MacIntyre, L. Pacholski, and J. Paris, editors,Logic Colloquium
’77. North Holland, 1978.

[2] Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in computa-
tional type theory using Nuprl.Journal of Applied Logic, 4(4):428–469,
2006.

[3] Stuart F. Allen. A Non-type-theoretic Definition of Martin-Löf’s Types.
In Gries [43], pages 215–224.

[4] Sergei Artemov. Uniform provability realization of intuitionistic logic,
modality and lambda-terms.Electronic Notes on Theoretical Computer
Science, 23(1), 1999.

[5] S. Awodey, N. Gambino, and K. Sojakova. Inductive types in homotopy
type theory. Technical Report arXiv:1201.3898v1, 2012.

[6] J. L. Bates and Robert L. Constable. Proofs as programs.ACM
Transactions of Programming Language Systems, 7(1):53–71, 1985.

[7] H. Benl, U. Berger, H. Schwichtenberg, et al. Proof theory at work:
Program development in the Minlog system. In W. Bibel and P. G.
Schmitt, editors,Automated Deduction, volume II. Kluwer, 1998.

[8] Stefan Berghofer.Proofs, Programs and Executable Specifications in
Higher Order Logic. PhD thesis, Technische Universität München, 2004.

[9] Stefan Berghofer and Tobias Nipkow. Executing higher order logic. In
P. Callaghan, Z. Luo, J McKinna, and R. Pollack, editors,Types for
Proofs and Programs: TYPES’2000, volume 2277 ofLecture Notes in
Computer Science. Springer-Verlag, 2002.

[10] Yves Bertot and Pierre Castéran.Interactive Theorem Proving and Pro-
gram Development; Coq’Art: The Calculus of Inductive Constructions.
Texts in Theoretical Computer Science. Springer-Verlag, 2004.

[11] Evert W. Beth. Semantical considerations on intuitionistic mathematics.
Indagationes mathematicae, 9:572 – 577, 1947.

[12] M. Bickford, R. Constable, and V. Rahli. The Logic of Events,
a framework to reason about distributed systems. Technical Report
arXiv:1813:28695, CIS, Cornell University, 2012.

[13] Mark Bickford, Robert Constable, and David Guaspari. Generating
event logics with higher-order processes as realizers. Technical Report
http://hdl.handle.net/1813/23562, Cornell University, 2011.

[14] Mark Bickford and Robert L. Constable. Formal foundations of
computer security. InFormal Logical Methods for System Security and
Correctness, volume 14, pages 29–52, 2008.

[15] E. Bishop and D. Bridges.Constructive Analysis. Springer, New York,
1985.

[16] Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda –
a functional language with dependent types. InLNCS 5674, Theorem
Proving in Higher Order Logics, pages 73–78. Springer, 2009.

[17] Douglas Bridges and Fred Richman.Varieties of Constructive Mathe-
matics. Cambridge University Press, Cambridge, 1988.

[18] L.E.J. Brouwer. Intuitionism and formalism.Bull Amer. Math. Soc.,
20(2):81–96, 1913.

[19] Alonzo Church. A set of postulates for the foundation of logic.Annals
of mathematics, second series, 33:346–366, 1932.

[20] Alonzo Church.The Calculi of Lambda-Conversion, volume 6 ofAnnals
of Mathematical Studies. Princeton University Press, Princeton, 1941.

[21] Robert Constable and Mark Bickford. Intuitionistic Completeness of
First-Order Logic. Technical Report arXiv:1110.1614v3, Computing and
Information Science Technical Reports, Cornell University, 2011.

[22] Robert Constable and W. Moczydlowski. Extracting programs from
constructive HOL proofs via IZF set-theoretic semantics. InIJCAR
2006, LNCS 4130, pages 162–176. Springer, 2006.

[23] Robert L. Constable. Constructive mathematics and automatic program
writers. In Proceedings of the IFIP Congress, pages 229–233. North-
Holland, 1971.

[24] Robert L. Constable. The semantics of evidence (also appeared as
Assigning Meaning to Proofs).Constructive Methods of Computing
Science, F55:63–91, 1989.

[25] Robert L. Constable. Effectively nonblocking consensus procedures can
execute forever: a constructive version of FLP. Technical Report 11512,
Cornell University, 2008.

[26] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleave-
land, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith.
Implementing Mathematics with theNuprl Proof Development System.
Prentice-Hall, NJ, 1986.

[27] Robert L. Constable and Scott F. Smith. Computational foundations
of basic recursive function theory.Journal of Theoretical Computer
Science, 121:89–112, December 1993.

[28] Karl Crary. Type–Theoretic Methodology for Practical Programming
Languages. PhD thesis, Cornell University, Ithaca, NY, August 1998.

[29] H. B. Curry, R. Feys, and W. Craig.Combinatory Logic, Volume I.
Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1958.

[30] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
Proceedings of the 3rd ACM SIGPLAN international conference on
Principles and practice of declarative programming, PPDP ’01, pages
162–174, New York, NY, USA, 2001. ACM.

[31] A. Datta, A. Derek, J.C.Mitchell, and R. Roy. Protocol Composition
Logic. Electronic Notes Theoretical Computer Science, 172:311–358,
2007.

[32] N. G. de Bruijn. The mathematical language Automath: its usage and
some of its extensions. In J. P. Seldin and J. R. Hindley, editors,



Symposium on Automatic Demonstration, volume 125 ofLecture Notes
in Mathematics, pages 29–61. Springer-Verlag, 1970.

[33] Nachum Dershowitz and David Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning Vol 1, pages
535–610. Elsevier, 2001.

[34] Michael Dummett. The philosophical basis of intuitionistic logic. In
H.E. Rose J. Shepherdson, editor,Logic Colloquium ’73.

[35] Michael Dummett. Elements of Intuitionism. Oxford Logic Series.
Clarendon Press, 1977.

[36] Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified
protection model of the sel4 microkernel. InVSTTE ’08: Proceedings of
the 2nd international conference on Verified Software: Theories, Tools,
Experiments, pages 99–114, Berlin, 2008. Springer.

[37] Amy P. Felty and Douglas J. Howe. Hybrid interactive theorem proving
using Nuprl and HOL. In CADE 97, LNAI 1249, pages 351–365.
Springer.

[38] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-
possibility of distributed consensus with one faculty process.JACM,
32:374–382, 1985.

[39] Georges Gonthier. Formal proof - the four color theorem.Notices of
the American Math Society, 55:1382–1392, 2008.

[40] Michael Gordon, Robin Milner, and Christopher Wadsworth.Edinburgh
LCF: a mechanized logic of computation, volume 78 ofLecture Notes
in Computer Science. Springer-Verlag, NY, 1979.

[41] Johan Georg Granström.Treatise on Intuitionistic Type Theory. Springer,
2011.

[42] Cordell C. Green. An application of theorem proving to problem solving.
In IJCAI-69, pages 219–239, Washington, DC, May 1969.

[43] D. Gries, editor.Proceedings of the 2nd IEEE Symposium on Logic in
Computer Science. IEEE Computer Society Press, June 1987.

[44] Robert Harper. Constructing type systems over an operational semantics.
J. Symbolic Computing, 14(1):71–84, 1992.

[45] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Gries [43], pages 194–204.

[46] Jason J. Hickey.The MetaPRL Logical Programming Environment.
PhD thesis, Cornell University, Ithaca, NY, January 2001.

[47] W. Howard. The formulas-as-types notion of construction. InTo H.B.
Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism,
pages 479–490. Academic Press, NY, 1980.

[48] Douglas J. Howe. The computational behaviour of Girard’s paradox. In
Gries [43], pages 205–214.

[49] Douglas J. Howe. Equality in lazy computation systems. InProceedings
of the 4th IEEE Symposium on Logic in Computer Science, pages 198–
203. IEEE Computer Society Press, June 1989.

[50] Douglas J. Howe. On computational open-endedness in Martin-Löf’s
type theory. In LICS91 [62], pages 162–172.

[51] Douglas J. Howe. Semantic foundations for embeddingHOL in Nuprl.
In Martin Wirsing and Maurice Nivat, editors,Algebraic Methodology
and Software Technology, volume 1101 ofLecture Notes in Computer
Science, pages 85–101. Springer-Verlag, Berlin, 1996.

[52] Paul B. Jackson.Enhancing theNuprl Proof Development System and
Applying it to Computational Abstract Algebra. PhD thesis, Cornell
University, Ithaca, NY, January 1995.

[53] Paul B. Jackson.The Nuprl Proof Development System, Version 4.2
Reference Manual and User’s Guide. Cornell University, 1996.

[54] S.C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic, 10:109 – 124, 1945.

[55] S.C. Kleene and R.E. Vesley.The Foundations of Intuitionistic Mathe-
matics. North-Holland, Amsterdam, 1965.

[56] Alexei Kopylov. Dependent intersection: A new way of defining records
in type theory. InProceedings of 18th IEEE Symposium on Logic in
Computer Science, pages 86–95, 2003.

[57] D. Kozen, C. Kreitz, and E. Eichter. Automating proofs in category
theory. In IJCAR, LNCS 4130, pages 392–407. Springer, 2006.

[58] G. Kreisel. Weak completeness of intuitionistic predicate logic.Journal
of Symbolic Logic, 27:139–158, 1962.

[59] Christoph Kreitz. Building reliable, high-performance networks with the
Nuprl proof development system.JFP, 14(1):21–68, 2004.

[60] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM, 21(7):558–65, 1978.

[61] Miriam Leeser. UsingNuprl for the verification and synthesis of
hardware.Phil. Trans. Royal Society of London, 339:49–68, 1992.

[62] Proceedings of the 6th Symposium on Logic in Computer Science, Vrije
University, Amsterdam, The Netherlands, July 1991. IEEE Computer
Society Press.

[63] Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey,
Mark Hayden, Kenneth Birman, and Robert Constable. Building reliable,
high-performance communication systems from components. In David
Kotz and John Wilkes, editors,17th ACM Symposium on Operating
Systems Principles (SOSP’99), volume 33(5) of Operating Systems
Review, pages 80–92. ACM Press, December 1999.

[64] Nancy Lynch. Distributed Algorithms. Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

[65] Per Martin-L̈of. Constructive mathematics and computer programming.
In Proceedings of the Sixth International Congress for Logic, Method-
ology, and Philosophy of Science, pages 153–175, Amsterdam, 1982.
North Holland.

[66] Per Martin-L̈of. Intuitionistic Type Theory. Number 1 in Studies in
Proof Theory, Lecture Notes. Bibliopolis, Napoli, 1984.

[67] J. McCarthy. Recursive functions of symbolic expressions and their com-
putations by machine, part i.Communications of the ACM, 3(3):184–
195, 1960.

[68] David McCarty. Completeness and incompleteness for intuitionistic
logic. Journal of Symbolic Logic, 73(4):1315–1327, 2008.

[69] P.F. Mendler. Recursive types and type constraints in second-order
lambda calculus. In Gries [43], pages 30–36.

[70] P.F. Mendler.Inductive Definition in Type Theory. PhD thesis, Cornell
University, Ithaca, NY, 1988.

[71] Chetan Murthy. An evaluation semantics for classical proofs. In LICS91
[62], pages 96–109.

[72] Pavel Naumov, Mark-Olivar Stehr, and José Meseguer. TheHOL/Nuprl
proof translator: A practical approach to formal interoperability. In
TPHOLS 2001, LNCS 2152, pages 329–345. Springer.

[73] R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrijer.Selected Papers
on Automath, volume 133 ofStudies in Logic and The Foundations of
Mathematics. Elsevier, Amsterdam, 1994.

[74] Bengt Nordstr̈om, Kent Petersson, and Jan M. Smith.Programming in
Martin-Löf ’s Type Theory. Oxford Sciences Publication, Oxford, 1990.

[75] Christine Paulin-Mohring. Inductive definitions in the systemCoq; rules
and properties. In J. F. Groote M. Bezem, editor,Typed Lambda Calculi
and Applications, Lecture Notes in Computer Science. Springer-Verlag,
1993.

[76] Lawrence C. Paulson.Isabelle: A Generic Theorem Prover, volume
828 ofLecture Notes in Computer Science. Springer-Verlag, New York,
1994.

[77] Gordon D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Aarhus University, Aarhus University,
Computer Science Department, Denmark, 1981.

[78] S. Schmitt, L. Lorigo, C. Kreitz, and A. Nogin.JProver: Integrating
connection-based theorem proving into interactive proof assistants. In
IJCAR, LNAI 2083, pages 421–426. Springer, 2001.

[79] D. Scott. Constructive validity. In D. Lacombe M. Laudelt, editor,
Symposium on Automatic Demonstration, volume 5(3) ofLecture Notes
in Mathematics, pages 237–275. Springer-Verlag, New York, 1970.

[80] Zhong Shao. Certified software.Communications of the ACM, 53:56–66,
2010.

[81] M.H. Sørensen and P. Urzyczyn.Lectures on the Curry-Howard
Isomoprhism. Elsevier, 2006.

[82] A. S.Troelstra. Realizability. In S.R. Buss, editor,Handbook of
Proof Theory, volume 137 ofStudies in Logic and the Foundations of
Mathematics, pages 407–473. Elsevier, 1998.

[83] George G. Szpiro.Kepler’s Conjecture. Wiley, 2003.
[84] A.S. Troelstra and D. van Dalen.Constructivism in Mathematics, An

Introduction, volume I, II. North-Holland, Amsterdam, 1988.
[85] A. M. Turing. On computable numbers, with an application to the

Entscheidungs problem. InProceedings London Math Society, pages
116–154, 1937.

[86] Walter P. van Stigt.Brouwer’s Intuitionism. North-Holland, Amsterdam,
1990.

[87] Valdimir Voevodsky. Notes on type systems. School of Mathematics,
Institute for Advanced Study, Princeton, NJ, 2011.

[88] G. Winskel. Events in Computation. PhD thesis, University of
Edinburgh, 1980.


