On Building Constructive Formal Theories of
Computation
Noting the Roles of Turing, Church, and Brouwer

Robert L. Constable
Cornell University

Abstract—In this article | will examine a few key concepts and using proof assistants like Coq or HOL or Twelf; and some
design decisions that account for the high value of implemented researchers claim that it is becoming a requirement for certain
cpnst_ructive type theories in computer science. I’Il_stress the kinds of results in programming language (PL) research that
historical fact that these theories, and the proof assistants that .
animate them, were born from a strong partnership linking they be for_mally proved and checked by a proof aSS'S_tant' In
computer science, logic, and mathematics. other meetings we see protocol correctness [14] established by

Nuprl and properties of the seL4 microkernel verified using
deep insights from the earliest pioneers: Turing — the first Isabelle-HOL [36] and certified §ystem code using Coq [80]
computer scientist, Church — the patriarch of logic in computer The_ Coq and Nuprl_ proof assistants are based on _related
science, and Brouwer — a singular pioneer of intuitionism and Versions of constructive type theory, tialculus of Inductive
constructive mathematics. They created solid intellectual ground Constructionsfor Coq [10], [75] and Computational Type
on which to build a formal implemented constructive theory of Theory(CTT) [26], [2] for Nuprl! There is also a constructive
computation _vvhose_ influence will be felt WeI_I beyond computing \,arsion of Isabelle-HOL type theory [9], [8] whose semantics
and information science alone. All generations of constructive . . . e o
type theory researchers since this beginning have had leaders'S 9IV€N using Intylthnlstlc _ZF set theory _[22]' Qne of the
from all three disciplines. most notable verifications using a proof assistant is Gonthier’s

proof of the Four Color Theorem in Coq [39]. Coq and Nuprl
and their proof assistants was presented in LICS proceedings, and were both used. n sgttllng open mathematlcal problems [39],
LICS could be a natural home for future work in this flourishing [71], @and HOL is being used to formalize and check Halles
area which is the epitome of logic in computer science. proof of the Kepler conjecture [83]. The Minlog system [7]

Index_Terms—attack-tolerance, automated reasoning, Coq has been used in very interesting proof transformations. These
completeness, FLP theorem, intu,itionistic logic, logic of ’events’, r_eSUItS de!oend on advanced proof tec_:hnology, and at _the_same
Nuprl, proof assistants, propositions-as-types, protocol synthesis time they illustrate some of the deep intellectual contributions

of computer science — predicted by Al researchers in the 50’s
and examined by philosophically trained logicians who tie this
|. INTRODUCTION work to enduring questions of epistemology [34], [35], [41].
| believe that research investments by industry, governments,
and universities will expand the role of constructive type

Computer scientists report a growing influenceimiple- theories, deepen the science behind them, and encourage their
mented constructive type theorieShis is due in part to implementation in the cloud. New mathematical and logical
their role in programming language research, operating systessults, e.g. Homotopy Type Theory [87], [5], [57], will not
verification, fault-tolerant and attack-tolerant protocol syrenly make the theories more expressive, they will also help
thesis, access control systems, security research, and otlerimplement them better. Research in programming lan-
core computing topics. These implemented theories embagilyages and programming environments could medweect-
deep and compelling discoveries from computer science, lodiy-construction programming with dependent tygésndard
and mathematics that become tightly entangled in the impld6]. Proof assistants will share formal theories and integrate
mentations. Such theories have the potential to provide atiher formal methods tools into an advanced proof technology
integratedfoundational theory of computatiosuitable to all built around them. The inherently compositional nature of
three disciplines and beyond. Current circumstances portgimdof assistant based formal method8l multiply the value
an increased effort to enrich these theories and improve thefrproof assistants as they share theories. Critical applications
implementations in proof assistants that become widely shaneill justify adding computing power to the proof assistants;
distributed resources “residing in the clouds”. that power will extend their reach deeper into science and

One of many examples of a growing influence of construc-, ,
For example, both theories use the results of Mendler [69], [70] on

tive type theories is that at the premier conferences on P'?Qéursive types, both are based on propositions-as-types, both use the LCF
gramming languages such as POPL we see results establish&id mechanism [40], and the systems share some implementation elements.

I will recall how modern type theory researchers built on

Much of the seminal modern work creating these type theories

A. Background

mathematics. We will also apply these theories and their prdéft is necessary to reason about Turing computable functions,
assistants to themselves to significantly improve their impléhey are defined as an explicit subtype.
mentations, illustrating the autocatalytic nature of research inOne of the major advantages of using an untyped com-

this field. putation system is that it can express the most efficient and
compact algorithms. For example, tliecombinators are avail-
B. Organization able for expressing arbitrary recursive algorithms. In Nuprl

. . we use these combinators as realizersdfficient induction
In. the.ne.xt sectloq | present some of the mos.t Importa, Finciples a technique that Doug Howe used to great effect in
basic principles behind the design of Computatlonql Ty is work on the Girard paradox [48]. For instance, the realizer
Theory (.CTT) [2], the name we gave to the version or the following efficient induction principle is given by
constructive type theory implemented by Nuprl as of 200 mbinator that is proved to be in the type of the induction

This theory includes the types needed to build a theory inciple: (P(0)&VYn : N.P(n < 4) = P(n)) = ¥n : N.P(n)
classes and objects as reported in work with Jason Hickey [48l. "' o iied by a recursive function) _ zf .

and Alexei Kopylov [56] as well as work on the Formal Digita then b else h -y
Library (FDL) that is the data base of definitions, tactics, ankgal ren belse h(z, f(x+4)-
theorems used by Nuprl. Since the 2006 publication, we haBe Computational equality

taken steps to add distributed processes to the ,CompUtatiof-‘zeasoning about untyped terms is critical in automated
system and the type gfrocessesindeventsto the logic [13]. aa50ning. In Nuprl this is based on Howe's results on equality
We view this as extending the notion pfoofs as programs ;, lazy computation systems [49]. We write~ b when a is
[23], [6], [42] to that ofproofs as processes computationally equal td and use the generalized rewrite
package [33] that Paul Jackson wrote [52], [53] based on
Il. BASIC PRINCIPLES Paulson’s rewrite package from Isabelle [76]. One of the most
common rewrites is to replace a term by one computationally
equal to it. This is an effective way to establish properties of
Constructive type theories include a programming languagsfficient realizers, by showing them computationally equal to
For ITT82 [65], [74] and CTT [26], [2] this is arapplied the primitive realizers.
untyped lambda calculu®ased on Church’pure untyped o
lambda calculus[19], [20]. Instead of encoding into pureC- Typing judgments
lambda terms the operators such as pairs and tags as well d6 we let fiz be a simple fixed point combinator with
data, e.g. Booleans, numbers, lists etc, these are added as t@svreduction rule thafiz(A(f.0(f))) reduces in one step to
primitives. The computation rules are typically presented {fiz(A(f.b(f)))), then to use
the style of Plotkin’s structured operational semantics [77]. An .
applied untyped lambda calculus with atoms and lists became fiz(A(fM(@. if @ =0then b else h(z, f(z + 4)))))

the basis for Lisp [67] (in which Nuprl is implemented). a5 a realizer for the above efficient induction formula, we
As Church, Kleene and Rosser investigated the untypgflly need to prove that it belongs to the type of the formula
lambda calculus in the 30s, Church came to believe it Captur@&:()rding to the propositions as types principle and the PER
the intuitive notion ofeffective computabilitybut Godel and semantics based on it [3], [44]. This involves finding the right
others were not convinced until they saw that the syste@mss andh. In CTT and ITT this is done by proving the
was equivalent to Turing machines. We now say that thgping judgmenby ordinary induction. It is not established by
lambda calculus i§uring completerecognizing the intuitive g type checking algorithm because in general type judgments
clarity of Turing’s formulation [85]. The CIC type theory startsgre undecidable. Here we see a contrast between CTT and
with an applied typed lambda calculus and is thus a theotyC that would need to be resolved in any unified theory. One
based ortotal computable functionwhereas CTT is based onpjausible unification is to employ a type checking algorithm
partial Computable functionsThis difference was studied in and alsmllow other type judgments to be established by proof
detail in work with Smith [27] and Crary [28]. An efficient Thjs is essentially what happens in practice in Nuprl because
implementation of this underlying programming languagge normal “auto-tactic” proves a very large percentage of the
guarantees that the type theory can express algorithms welling judgments.
enough for serious practical work. In the case of Nuprl, this
efficiency is obtained by applying a series of transformatioh® Logic
to the primitive evaluator, adding closures, continuations, andit is well known that the implemented constructive type
defunctionalization to end up with an efficient state machinfeories are based on tpeopositions as types principld his
as described by Danvy and Nielsen [30]. This and oth@fndamental logical principle is used to support the extraction
techniques from functional programming provide a principled

path to efficient evaluation. 2There are researchers who believe that Mariifi-intended to adopt

, . Church’s thesis in ITT based on his writings of the time. | don't know if
a) Church’s Thesis:None of CIC, CTT nor ITT adopt ihat is the case, but for CTT we never intended to add a version of Church’s

Church’s thesis, and CTT ispen-endedy design [24], [50]. thesis.

A. The computation system and its data

of programs from proofs. | regard this principle as one afnder theBrouwer Heyting Kolmogorov (BHK3emantics, the
the most basic ideas in logic — yet it does not have a standamtended semantics of both iIFOL and mFOL. Our proof is
name. Computer scientists, especially in the LICS communitgfuitionistic, and it provides an effective procedufef that
like to call this idea theCurry-Howard isomorphismindeed converts uniform minimal evidence into a formal first-order
that is the title of one of the comprehensive books on thmoof.

subject, Lectures on the Curry-Howard Isomorphisii81]. Theorem: Completeness of Minimal First-
However, that book cites over twenty contributors to th@rder Logic: Given a valid evidence structure,
concept, from logic, computer science, and mathematics. The H(D,R) = G(D, R),evd(h), with uniform evidence
origin of the name might stem from Martinéf's writings evd(h) over the domairD and atomic relationg for a logical
[65], [66] in part because he was very influenced by Howafdrmula G(D, R) in first-order minimal logic, we can build
[47] when he visited him in the late 60’s. a minimal logic proof,pf(h), of the goal formulaG(D, R),

The idea occurs clearly as an isomorphism in the bodkom hypothesed?, that is,h: H -L . G(D, R) by pf(h).
Combinatory Logic[29] by Curry and Feys, pages 312- Moreover, from the proof of this completeness theorem, we
315. However, the central idea goes back to Brouwean extract a proof building proceduRef that yields the proof
1907 [86], [18], and among logicians it is called thef(h). We have implementeéf. Uniform validity is defined
Brouwer/Heyting/Kolmogorov oBHK semanticgor intuition- using the intersection operator as a universal quantifier over the
istic logic, see [84], [82]. N.G. deBruijn called it propositiongdomain of discourse and atomic predicates. FormulasOt
as types (PAT) omroofs as termgPAT), and he used the that are uniformly valid are also intuitionistically valid, but not
idea for all Automath theories [32], [73] which are classicatonversely. Our strongest result requires the Fan Theorem; it
It seems that he learned this from Heyting when they weean also be proved classically by showing tiaf terminates
colleagues in Amsterdam. The connection from early Brouwsesing Konig's Theorem.
to recursive realizability was made by Kleene already in 1945We intuitionistically prove completeness f@fOL as fol-

[54] and extended in the bookoundations of Intuitionistic lows. Friedman showed th#OL can be embedded in mini-
Mathematicsvith Vesley in 1965 [55]. Let’s call this semanticsmal logic (nFOL) by his A-transformation, mapping formula
Brouwer realizabilitywhen indexings of partial recursive func-F to F4. If F is uniformly valid, then so is"4, and by our
tions are not used. | suggested the naswiElence semantics completeness theorem, we can find a proofdf in minimal
when | showed that the principle could be applied to classidalgic. Then we intuitionistically prové” from Ffalse je. by
logic using oracle computations (calledagid to justify the taking False for A and for L of mFOL. This result resolves
law of excluded middle [24], [50], [51], and the resultingan open question posed by Beth in 1947.
semantics is classically equivalent to Tarski's semantics f@orollary: Completeness of Intuitionistic First-Order
first-order logic. Logic: F' is a uniformly valid formula of iFOL if and only if

b) Completeness problemThe BHK semantics was it is provable in iFOL.
problematic because logicians could not prove completeness
for Intuitionistic First-Order Logic (iFOL) relative to the BHK
semantics even though Beth [11] made a valiant effort in 1947We look briefly at some of the key ideas and issues in the
which gave us tableaux systems. implementations of constructive type theories. This is a realm

The most faithful constructive Comp|eteness theorem fm which the computer scientists were indispensable both to the
intuitionistic validity is by Friedman in 1975 (presented indesign of the theories and to their deployment and application.
[84]), and there is a classical proof for the Brouwer-Heytindn the other hand, the task could not be separated from logical
Kolmogorov semantics for intuitionistic first-order logic byissues nor from the norms of mathematical practice.
Artemov usingprovability Ioglc[4].. Results sugg.est how sub-A. LCF-style tactics
tle completeness theorems are since constructive completeness
with respect to full intuitionistic validity contradicts Church's It is noteworthy that the Cog, HOL, Isabelle, and Nuprl
Thesis [58], [84] and implieMarkov’s Principleas well [68]3 prqof assistants are all implemented using the tactic mech-

My colleague Mark Bickford and | have made progress oism from the LCF system (Logic for Computable Func-
this problem recently by observing that intuitionistic completdions) reported in the booldinburgh LCF [40], subtitled
ness is not the right notion. It turns out that the proof rule§ Mechanised Logic of Computation”. This means that
for iFOL yield a stronger semantic notionniform validity ~Proof automation is based on tactics and tacticals and goal
because the realizers are all polymorphic terms. In a submitf@fected proof. Tactics generafgimitive proofsthat can be
article “Intuitionistic completeness of first-order logic” [21],independently checked by relatively simple programs. These
we established completeness fiotuitionistic first-order logic, tactic-based proveralso integrate various deC|S|or_1 procedures
iFOL, by showing that a formula is provable if and only ifand fully automatic provers, JProver [78], which generate

its embedding into minimal logianFOL, is uniformly valid Primitive proofs when they succeed. _
The power of the tactic mechanism comes from its abstract

3Church's Thesis was not an issue for us because we do not assume @i heuristic nature. Tactics are not guaranteed to find a proof,
CTT, our metalogic. they search and they guess and they try. On the other hand,

Il. | MPLEMENTATIONS

they need to be stable enough to replay when they succegalt. There may be more than one component with the same
Tactics can be assembled into “super-tactics” that start to loldcation. The internal part of a component ipecess—its
like automatic theorem provers for certain classes of resufiogram and internal (possibly hidden) state. The external part
[12].4 In Nuprl there is a very powerful tactic called MA-of a component is its interface with the rest of the system. Here
Auto that can often finish a proof. In Coq a correspondintpe interface is a list ofmessagescontaining eitherata or
super tactic is called “Crush.” In addition, special super-tactiggocesses and labeled with the location of the recipient. The
are assembled for domain specific verification. These tactitggher order” ability to send a message containing a process
are designed to completely solve the task they are desigradldws such systems to grow by “forking” or “bootstrapping”
for, and because they work most of the time, they are allowaedw components. A system executes as follows. At each step,
to run for many hours. the environmentmay choose and remove a message from the
B. Programming Environments exter_nal component. If _the chosen message is addressed to a

' location that is not yet in the system, then a new component

Environments for using constructive proof assistants alg9created at that location, using a givieoot-processand an
provide evaluators and compilers. Formal Digital Librargmpty external part.
(FDL) capabilities are especially important once the formal ach component at the recipient location receives the mes-
library is very large with many users. It is important to knowage as input and computes a pair that contains a process
whether a concept is already defined or a theorem alreaglyy an external part. The process becomes the next internal
proved by another user (or oneself in the past). Jason Hiclﬁg-fyrt of the component, and the external part is appended
built a logical programming environmentPE, and a proof tg the current external part of the component. A potentially
assistant for CTT called MetaPRL [46]. MetaPRL is a logicahfinite sequence of steps, starting from a given system and
framework [45] in which theories can be formally related, e.Qising a given boot-process, isran of that system. From a
using Aczel's implementation of CZF [1] into CTT. Logicalyyn of a system we derive an abstraction of its behavior by
frameworks like MetaPRL allow users to share related theorif&:using on theeventsin the run. The events are the pairs,
and share results [37], [72]. They are important to the study.) of a location and a step at which locatiengets an
of Mathematical Knowledge Management which is a topigput message at step i.e. information is transferredEvery
that will become increasingly important as the proof assistardgent has a location, and there is a natwalsal-ordering
tackle larger tasks and need to cooperate. On this topicol{ the set of events, the ordering first considered by Lamport
will be essential for computer scientists, information scientist@o]_ This allows us to define aavent-orderinga structure,
logicians and mathematicians to cooperate. E, loc, <, info), in which the causal ordering is transitive

The Nuprl FDL includes an on-going development o}elation on E that is well-founded, and locally-finite (each
constructive analysis following closely the boGonstructive gyent has only finitely many predecessdré)lso, the events
Analysis[15] by Bishop and Bridges which extends Bishop’yt a given location are totally ordered ky The information,
1967 book that brought the new generation of constructi\{gfo(e), associated with eventis the message input toc(c)
mathematicians including Bridges and Richman [17] into thghen the event occurred. We have found that requirements for
partnership. They reexamined ties to Brouwer. Bishop inspirggktributed systems can be expressed as (higher-order) logical
logicians to find a formalism for his mathematics, includingopositions about event-orderings. To illustrate this, | present
Martin-Lof [65] and Scott [79] and computer scientists like mg very simple example afonsensusn a group of processes.
striving to design implementable formalisms for mathematics c) A simple consensus protocol: TwoThirdEach par-

and the theory of computation [23]. ticipating component will be a member of some group and

IV. FORMAL DISTRIBUTED COMPUTING MODEL each group has a namé;. The groups have: = 3f + 1
Ever since our commercialized work on the Ensembfgembers' and they are de5|gne_d o toleratailures. When
distributed system [63], [59], we have devoted more effoft . component in a grougy receives a messag(_@start],G}

It starts the consensus protocol whose goal is to decide on

to verifying and synthesizing distributed protocols. This ha\f'alues received by the members frarients

led us to model distributed computing concepts and prlml'uvesWe assume that once the protocol starts, each process has

in the constructive type theory of Nuprl. Our first eﬁortsreceived a valuey; or has a default non-value. The simple

used the I0A model of Lynch [64] and the logic of event . L
[14] derived from a variant of the IOA model. Since ther?hWOThlrds consensus protocol is this: A procésshat has a

valuewv; of type T starts arelectionto choose a value of type

we have made the process model progressively more abstract .) : .
and now are using our General Process Model [13]. Herea?s with a decidable equality) from among those received by

a brief overview of this model including key concepts fogeeniw:ers of the group from clients.

reasoning abouevent structuresreated from computationsUn(i]iI decide. do:

in this model. Asystenonsists of a set afomponentsEach Increer:erc;; oL 2. Broadcastvote (els.v3) 10 G
. iy & iy Uq)

component has #ocation, aninternal part, and anexternal ar .
P " P 3. Collect in list Msg,; 2f + 1 votes of electiorel;;

4The termsuper-tactiowas used by Miriam Leeser and her group [61] and
applied by Bickford to PCL as well [31], [12]. 5These event structures and orderings are similar in spirit to Winskel's [88].

4. Choosev; := f(Msg,); satisfiesy. If Sy is a strong realizer of); and S, is a strong

5.1f Msg, is unanimoughen decide; = true realizer ofiy, thenS; U Sy is a strong realizer of); A 5.

End One of our main tools is that propagation rules like those
used in the consensus example have strong realizers. A realizer

The elections are identified by natural nUmbetS,initia"y for a propagation ruled é B@g is a set of Components
0, and incremented by 1, and a Boolean variableide; is that can each, as a (computable) function of the history of
initially false. The function from lists of valuesl/sg; to a inputs at its location, recognize, and compute the vaiue
value is a parameter of the protocol. If the typeof values events in classt that occur there and send messages that will
is Boolean, we can takg¢ to be the majority function. eventually result in an events in clags with value f(v) at

We describe protocols like this by classifying the evenigach location ing(v). We call the classes! that can be so
occurring during execution. In this algorithm there &mput, recognizedprogrammable
\Vote Collect and Decide events. The components can rec-
ognize events in each of thesgent classegin this example V. ATTACK TOLERANCE
they could all have distinctive headers), and they can associat@e assume that deployed systems will be attacked. We
information with each event (e.de;,v;) with Vote, Msg, can protect protocols by formally generating a large number
with Collect, and f(Msg,) with Decide). Events in some of logically equivalent variantsstored in anattack response
classescauseevents with related information content in othefibrary. Each variant uses distinctly different code which a
classes, e.g. Collect causes a Vote event with vdludsg;). system under attack can instalh-the-flyto replace compro-
In general, arevent classX is function on events in an eventmised components. Each variant is known to be equivalent and
ordering thateffectively partitionsevents into two setdy(X) correct. We express threatening features of the environment
andE— E(X), and assigns a valug (e) to eventse € E(X). formally and discriminate among the different types. We can
Example 1. Consensus specification do tf_]i; in our new GPM modgl becautges environment is an
explicit component about which we can reason.
Let P and D be the classes of events with headerspose) _)
and decide, respectively. Then theafety specificatiorof a A- Synthetic Code Diversity
consensus protocol is the conjunction of two propositions We introduce diversity at all levels of the formal code
on (extended) event-orderings, callagreemeniall decision development (synthesis) process starting at a very high level
events have the same value) araponsivenesgthe value of abstraction. For example, in the TwoThirds protocol, we
decided on must be one of the values proposed): can use different functiong, alter the means of collecting
Ver,es: E(D). D(ex) = D(es) i/t[égi\,/vseygtrrele;)zlg \t/gricziztast;)fr;raiiprotocol, alter the data ty!oes,
. ple provably correct versions
Ve:E(D). 3’1 E(P). ¢’ <e A D(e) = P(¢). of protocols at each level of development, e.g. compiling
We can prove safety and the followirliyeness property TwoThirds into Java, Erlang, anBli#. The higher the starting
about TwoThirds. We say that activity in the protocohtracts point for introducing diversity, the more options we can create.
to a subsetS of exactly2f + 1 processes if these processe_we can also inject _cod_e diversity int(_) the fully automa‘Fi(_: ver-
all vote in electionn say atvt(n);, ..., vt(n), for k = 2f +1 ification of authentication protocols iRrotocol Composition
and collect these votes atn)i, ..., ¢(n)x, and all vote again Logic (PCL) [31] implemented in Nuprl. _
in electionn + 1 at vt(n + 1)1,...,vt(n + 1), and collect d) The Environment as Adversarfhe standard version
atc(n+1)1,...,c(n+ 1)5. In this case, these processessin Of the Fisher/Lynch/Paterson theorem [38] is that no determin-

all decide in roundn + 1 for the value given byf applied istic algorithm can solve the consensus problem for a group
to the collected votes. This is lvenessproperty. If exactly ©Of process in which at least one process might fail. This is a
f processes fail, then the activity of the groGp contracts negative statement, producing only a contradiction, yet implicit
to someS and decides. This fact shows that the TwoThird® all proofs is animagined constructiorf a nonterminating

protocol isnon-blocking i.e. from any state of the protocohexecution in which no process decides, they “waffle” endlessly.

there is a path to a decision. That imagined execution is an interesting object, displaying
)) what can go wrong in trying to reach consensus. The hypo-
A. Realizers and Strong Realizers thetical execution is used to guide thinking about consensus

If ¢ is a proposition about event orderings, e.g. liveness, \peotocol design. In light of that use, a natural question about
say that a systerrealizesy), if the event-ordering of any run the classical proofs of FLP is whether the hypothetical infinite
of the system satisfieg. We extend the “proofs-as-programs'waffling execution could actually be constructed from any
paradigm to “proofs-as-processes” for distributed computimmirported consensus protocB} that is, givenP, can we
by making constructive proofs that requirementsraedizable exhibit an algorithma such that for any natural number
For compositional reasoning, it is desirable to creattrang n, a(n) is the n-th step of the indecisive computation? It
realizer of requirement)—a system that realizeg in any appears that no such explicit construction could be carried
context Formally, systemS' is a strong realizer of) if the out following the method of the classical proof because there
event-ordering of any run of a systeff such thatS C S’, isn't enough information given with the protocol, and the

key concept in the standard proofs, the notionvalence
(univalenceand bivalencg, is not defined effectively, i.e. it
requires knowing the results of all possible executions. On%]
a proof can show that it will run forever.

The key to being able to build the nonterminating executiort®]
is to provide more information, which was done in [25]
by introducing the notion o&ffective nonblockingEffective
nonblocking is a natural concept when protocols are verifidtf]
using constructive logic.

P is called effectively nonblockingf from any reachable [11]
global states of an execution oP and any subsef) of n —
f non-failed processesye can findan execution from s
using @ and a processd’, in @ which decides a value.
Constructively this means that we haveamputable function [13]
wt(s, @), which produces an executiam and a states,, in
which a process, sa¥, decides a value.

Theorem (CFLP): Given any deterministic effectively non-
blocking consensus proceduPenith more than two processes
and tolerating a single failure, we can effectively constru[:]ts]
a nonterminating execution of it. Let the function producefs]
by this proof beflpc, then for a consensus procedure, say
the TwoThirdsprotocol given above and its nonblocking proo 17]
nb, we have that the environment can ufmc(nbd) to create
a message-order attack that will prevent TwoThirds frof#s]
deciding. [19]

What is noteworthy and perhaps alarming about this con-
structive result is that it says that if we take the trouble to proved]
that a consensus algorithm is non-blocking and correct, tr:f?%
we provide an adversary who knows the proof and controls
the network (as in a data center), an undefeatable denial of
service attack on a system that uses the protocol. This is K3l
what we expect from protocol verification!

(7]

(12]

(14]

[23]
VI. CONCLUSION

| believe that the core partnership driving the developz4]
ment of implemented constructive type theories remains vital
and productive and will be reinforced and strengthened
increasingly important applications, new discoveries about
type theory in general, and nepvover-assisted programming
languagesdbuilt to exploit the richness of the theories and th
capabilities of their proof assistants.

REFERENCES

[27]
Peter Aczel. The type theoretic interpretation of constructive set theory.
In A. Maclntyre, L. Pacholski, and J. Paris, editoksgic Colloquium
'77. North Holland, 1978.
Stuart Allen, Mark Bickford, Robert Constable, Richard Eaton,
Christoph Kreitz, Lori Lorigo, and Evan Moran. Innovations in computaf29]
tional type theory using Nuprlournal of Applied Logic4(4):428—-469,
2006.
Stuart F. Allen. A Non-type-theoretic Definition of Martindf’s Types.
In Gries [43], pages 215-224.
Sergei Artemov. Uniform provability realization of intuitionistic logic,
modality and lambda-term<lectronic Notes on Theoretical Computer
Science 23(1), 1999. [31]
S. Awodey, N. Gambino, and K. Sojakova. Inductive types in homotopy
type theory. Technical Report arXiv:1201.3898v1, 2012.
J. L. Bates and Robert L. Constable. Proofs as programl&M
Transactions of Programming Language Systen($):53—71, 1985.

(1]

(2]

(3]
(4]

(30]

(5]

[6] [32]

H. Benl, U. Berger, H. Schwichtenberg, et al. Proof theory at work:
Program development in the Minlog system. In W. Bibel and P. G.
Schmitt, editorsAutomated Deductignvolume II. Kluwer, 1998.

Stefan Berghofer.Proofs, Programs and Executable Specifications in
Higher Order Logic PhD thesis, Technische Univegitinchen, 2004.
Stefan Berghofer and Tobias Nipkow. Executing higher order logic.
P. Callaghan, Z. Luo, J McKinna, and R. Pollack, editdrgpes for
Proofs and Programs: TYPES'2000olume 2277 ofLecture Notes in
Computer SciencesSpringer-Verlag, 2002.

Yves Bertot and Pierre Casan. Interactive Theorem Proving and Pro-
gram Development; Coq'Art: The Calculus of Inductive Constructions
Texts in Theoretical Computer Science. Springer-Verlag, 2004.

Evert W. Beth. Semantical considerations on intuitionistic mathematics.
Indagationes mathematica®:572 — 577, 1947.

M. Bickford, R. Constable, and V. Rahli. The Logic of Events,

a framework to reason about distributed systems. Technical Report
arXiv:1813:28695, CIS, Cornell University, 2012.

Mark Bickford, Robert Constable, and David Guaspari. Generating
event logics with higher-order processes as realizers. Technical Report
http://hdl.handle.net/1813/23562, Cornell University, 2011.

Mark Bickford and Robert L. Constable. Formal foundations of
computer security. Ifformal Logical Methods for System Security and
Correctnessvolume 14, pages 29-52, 2008.

E. Bishop and D. BridgesConstructive AnalysisSpringer, New York,
1985.

Ana Bove, Peter Dybjer, and UIf Norell. A brief overview of Agda —

a functional language with dependent types.LNCS 5674, Theorem
Proving in Higher Order Logicspages 73-78. Springer, 2009.

Douglas Bridges and Fred RichmaNarieties of Constructive Mathe-
matics Cambridge University Press, Cambridge, 1988.

L.E.J. Brouwer. Intuitionism and formalismBull Amer. Math. Sog.
20(2):81-96, 1913.

Alonzo Church. A set of postulates for the foundation of loghtinals

of mathematics, second seri&3:346-366, 1932.

Alonzo Church.The Calculi of Lambda-Conversipwolume 6 ofAnnals

of Mathematical StudiesPrinceton University Press, Princeton, 1941.
Robert Constable and Mark Bickford. Intuitionistic Completeness of
First-Order Logic. Technical Report arXiv:1110.1614v3, Computing and
Information Science Technical Reports, Cornell University, 2011.
Robert Constable and W. Moczydlowski. Extracting programs from
constructive HOL proofs via IZF set-theoretic semantics. [JEAR
2006, LNCS 4130pages 162-176. Springer, 2006.

Robert L. Constable. Constructive mathematics and automatic program
writers. In Proceedings of the IFIP Congrespages 229-233. North-
Holland, 1971.

Robert L. Constable. The semantics of evidence (also appeared as
Assigning Meaning to Proofs).Constructive Methods of Computing
Science F55:63-91, 1989.

In

] Robert L. Constable. Effectively nonblocking consensus procedures can

execute forever: a constructive version of FLP. Technical Report 11512,
Cornell University, 2008.

] Robert L. Constable, Stuart F. Allen, H. M. Bromley, W. R. Cleave-

land, J. F. Cremer, R. W. Harper, Douglas J. Howe, T. B. Knoblock,
N. P. Mendler, P. Panangaden, James T. Sasaki, and Scott F. Smith.
Implementing Mathematics with tiduprl Proof Development System
Prentice-Hall, NJ, 1986.

Robert L. Constable and Scott F. Smith. Computational foundations
of basic recursive function theoryJournal of Theoretical Computer
Science 121:89-112, December 1993.

] Karl Crary. Type-Theoretic Methodology for Practical Programming

Languages PhD thesis, Cornell University, Ithaca, NY, August 1998.
H. B. Curry, R. Feys, and W. CraigCombinatory Logic, Volume. |
Studies in Logic and the Foundations of Mathematics. North-Holland,
Amsterdam, 1958.

Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In
Proceedings of the 3rd ACM SIGPLAN international conference on
Principles and practice of declarative programmjri@gPDP '01, pages
162-174, New York, NY, USA, 2001. ACM.

A. Datta, A. Derek, J.C.Mitchell, and R. Roy. Protocol Composition
Logic. Electronic Notes Theoretical Computer Scient&2:311-358,
2007.

N. G. de Bruijn. The mathematical language Automath: its usage and
some of its extensions. In J. P. Seldin and J. R. Hindley, editors,

[33]

[34]
[35]

[36]

[37]

(38]

[39]

[40]

[41]
[42]
[43]
[44]
[45]
[46]

[47]

(48]

[49]

[50]

[51]

[52]

(53]
[54]
[55]

[56]

[57]
(58]
[59]
[60]

[61]

Symposium on Automatic Demonstrationlume 125 ofLecture Notes [62]
in Mathematics pages 29-61. Springer-Verlag, 1970.

Nachum Dershowitz and David Plaisted. Rewriting. In A. Robinson and
A. Voronkov, editors,Handbook of Automated Reasoning Volpages [63]
535-610. Elsevier, 2001.

Michael Dummett. The philosophical basis of intuitionistic logic. In
H.E. Rose J. Shepherdson, editoogic Colloquium '73

Michael Dummett. Elements of Intuitionism Oxford Logic Series.
Clarendon Press, 1977.

Dhammika Elkaduwe, Gerwin Klein, and Kevin Elphinstone. Verified®4]
protection model of the sel4 microkernel. WBTTE '08: Proceedings of

the 2nd international conference on Verified Software: Theories, Too[§,5]
Experimentspages 99-114, Berlin, 2008. Springer.

Amy P. Felty and Douglas J. Howe. Hybrid interactive theorem proving
using Nuprl and HOL. In CADE 97, LNAI 1249 pages 351-365.
Springer. (66]
Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. "%7]
possibility of distributed consensus with one faculty procedaCM,
32:374-382, 1985.

Georges Gonthier. Formal proof - the four color theorelNotices of
the American Math Societ$5:1382-1392, 2008.

Michael Gordon, Robin Milner, and Christopher Wadswoidinburgh [69]
LCF: a mechanized logic of computatiomolume 78 ofLecture Notes

in Computer ScienceSpringer-Verlag, NY, 1979. [70]
Johan Georg Grangtm. Treatise on Intuitionistic Type Theargpringer,
2011.

Cordell C. Green. An application of theorem proving to problem solving[.
In IJCAI-69 pages 219-239, Washington, DC, May 1969. [72]
D. Gries, editor.Proceedings of the’2! IEEE Symposium on Logic in
Computer SciencdEEE Computer Society Press, June 1987.

Robert Harper. Constructing type systems over an operational semantj¢s]
J. Symbolic Computindl4(1):71-84, 1992.

Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for
defining logics. In Gries [43], pages 194-204. [74]
Jason J. Hickey. The MetaPRL Logical Programming Environment
PhD thesis, Cornell University, Ithaca, NY, January 2001. [75]
W. Howard. The formulas-as-types notion of construction.TénH.B.
Curry: Essays on Combinatory Logic, Lambda-Calculus and Formalism
pages 479-490. Academic Press, NY, 1980.

Douglas J. Howe. The computational behaviour of Girard’s paradox. I76]
Gries [43], pages 205-214.

Douglas J. Howe. Equality in lazy computation systemsPioceedings
of the 4" IEEE Symposium on Logic in Computer Scieruages 198
203. IEEE Computer Society Press, June 1989.

Douglas J. Howe. On computational open-endedness in Madifiis-L

(68]

(77

type theory. In LICS91 [62], pages 162-172. (78]
Douglas J. Howe. Semantic foundations for embeddi@)- in Nuprl.
In Martin Wirsing and Maurice Nivat, editor#lgebraic Methodology [79]

and Software Technologyolume 1101 ofLecture Notes in Computer
Science pages 85-101. Springer-Verlag, Berlin, 1996.

Paul B. JacksonEnhancing theNuprl Proof Development System and[go]
Applying it to Computational Abstract AlgebraPhD thesis, Cornell
University, Ithaca, NY, January 1995. 81]
Paul B. Jackson.The Nuprl Proof Development System, Version 4.4
Reference Manual and User's Guid€ornell University, 1996. 82]
S.C. Kleene. On the interpretation of intuitionistic number theory.
Journal of Symbolic Logic10:109 — 124, 1945.

S.C. Kleene and R.E. Veslefhe Foundations of Intuitionistic Mathe- [83]
matics North-Holland, Amsterdam, 1965. [84]
Alexei Kopylov. Dependent intersection: A new way of defining records

in type theory. InProceedings of 18 IEEE Symposium on Logic in [85]
Computer Scienggages 86-95, 2003.

D. Kozen, C. Kreitz, and E. Eichter. Automating proofs in category

theory. InIJCAR, LNCS 4130pages 392-407. Springer, 2006. [86]
G. Kreisel. Weak completeness of intuitionistic predicate logaurnal
of Symbolic Logic27:139-158, 1962. [87]

Christoph Kreitz. Building reliable, high-performance networks with the
Nuprl proof development systerdFP, 14(1):21-68, 2004. [88]
Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system.Communications of the ACM1(7):558-65, 1978.

Miriam Leeser. UsingNuprl for the verification and synthesis of
hardware.Phil. Trans. Royal Society of Londo839:49-68, 1992.

Proceedings of the’6 Symposium on Logic in Computer Scien¢gje
University, Amsterdam, The Netherlands, July 1991. IEEE Computer
Society Press.

Xiaoming Liu, Christoph Kreitz, Robbert van Renesse, Jason J. Hickey,
Mark Hayden, Kenneth Birman, and Robert Constable. Building reliable,
high-performance communication systems from components. In David
Kotz and John Wilkes, editorsl7"* ACM Symposium on Operating
Systems Principles (SOSP'99olume 33(5) of Operating Systems
Review pages 80-92. ACM Press, December 1999.

Nancy Lynch. Distributed Algorithms Morgan Kaufmann Publishers,
San Mateo, CA, 1996.

Per Martin-Lof. Constructive mathematics and computer programming.
In Proceedings of the Sixth International Congress for Logic, Method-
ology, and Philosophy of Sciencpages 153-175, Amsterdam, 1982.
North Holland.

Per Martin-Lof. Intuitionistic Type Theory Number 1 in Studies in
Proof Theory, Lecture Notes. Bibliopolis, Napoli, 1984.

J. McCarthy. Recursive functions of symbolic expressions and their com-
putations by machine, part iCommunications of the ACM8(3):184—
195, 1960.

David McCarty. Completeness and incompleteness for intuitionistic
logic. Journal of Symbolic Logic73(4):1315-1327, 2008.

P.F. Mendler. Recursive types and type constraints in second-order
lambda calculus. In Gries [43], pages 30-36.

P.F. Mendler.Inductive Definition in Type ThearyPhD thesis, Cornell
University, Ithaca, NY, 1988.

71] Chetan Murthy. An evaluation semantics for classical proofs. In LICS91

[62], pages 96-109.

Pavel Naumov, Mark-Olivar Stehr, and é&dsleseguer. ThelOL/Nuprl
proof translator: A practical approach to formal interoperability.
TPHOLS 2001, LNCS 215pages 329-345. Springer.

R. P. Nederpelt, J. H. Geuvers, and R. C. de Vrij€elected Papers
on Automath volume 133 ofStudies in Logic and The Foundations of
Mathematics Elsevier, Amsterdam, 1994.

Bengt Nordstdm, Kent Petersson, and Jan M. Smiffrogramming in
Martin-L6f’s Type Theory Oxford Sciences Publication, Oxford, 1990.
Christine Paulin-Mohring. Inductive definitions in the syst€wy; rules
and properties. In J. F. Groote M. Bezem, edifyped Lambda Calculi
and ApplicationsLecture Notes in Computer Science. Springer-Verlag,
1993.

Lawrence C. Paulsonlsabelle: A Generic Theorem Provewolume
828 of Lecture Notes in Computer Sciencpringer-Verlag, New York,
1994.

Gordon D. Plotkin. A structural approach to operational semantics.
Technical Report DAIMI-FN-19, Aarhus University, Aarhus University,
Computer Science Department, Denmark, 1981.

S. Schmitt, L. Lorigo, C. Kreitz, and A. NoginJProver: Integrating
connection-based theorem proving into interactive proof assistants. In
IJCAR, LNAI 2083pages 421-426. Springer, 2001.

D. Scott. Constructive validity. In D. Lacombe M. Laudelt, editor,
Symposium on Automatic Demonstrationlume 5(3) ofLecture Notes

in Mathematics pages 237-275. Springer-Verlag, New York, 1970.
Zhong Shao. Certified softwar€ommunications of the ACN33:56-66,
2010.

M.H. Sgrensen and P. Urzyczyn.Lectures on the Curry-Howard
Isomoprhism Elsevier, 2006.

A. S.Troelstra. Realizability. In S.R. Buss, editddandbook of
Proof Theory volume 137 ofStudies in Logic and the Foundations of
Mathematics pages 407-473. Elsevier, 1998.

George G. SzpiroKepler's Conjecture Wiley, 2003.

A.S. Troelstra and D. van DalenConstructivism in Mathematics, An
Introduction volume 1, 1. North-Holland, Amsterdam, 1988.

A. M. Turing. On computable numbers, with an application to the
Entscheidungs problem. IRroceedings London Math Socigfyages
116-154, 1937.

Walter P. van StigtBrouwer’s Intuitionism North-Holland, Amsterdam,
1990.

Valdimir Voevodsky. Notes on type systems. School of Mathematics,
Institute for Advanced Study, Princeton, NJ, 2011.

G. Winskel. Events in Computation PhD thesis, University of
Edinburgh, 1980.

In

