Step of Proof: eq_int_cases_test
9,38
postcript
pdf
Inference at
*
1
0
4
2
1
2
1
1
I
of proof for Lemma
eq
int
cases
test
:
1.
A
: Type
2.
x
:
A
3.
y
:
A
4.
P
:
A
5.
i
:
6.
j
:
7.
bb
:
8. (
i
=
j
) =
bb
9.
P
(if (
i
=
j
) then
x
else
y
fi )
10.
Type
11. (
i
=
j
)
12.
bb
:
. ((
i
=
j
) =
bb
)
Type
13.
z
:
14. (
i
=
j
) =
z
P
(if
z
then
x
else
y
fi )
latex
by (\p.let i = get_int_arg `i` p in
((OnHyps [i+1;i;-3;-3;-3] Thin)
CollapseTHEN (
C
AddHiddenLabel `functionality`))
p)
latex
C
1
: .....functionality..... NILNIL
C1:
7.
P
(if (
i
=
j
) then
x
else
y
fi )
C1:
8.
z
:
C1:
9. (
i
=
j
) =
z
C1:
P
(if
z
then
x
else
y
fi )
C
.
Definitions
x
:
A
.
B
(
x
)
,
t
T
,
if
b
then
t
else
f
fi
,
f
(
a
)
,
(
i
=
j
)
,
s
=
t
,
,
,
,
x
:
A
B
(
x
)
,
Type
origin