Step of Proof: subtype_rel_dep_product_iff
11,40
postcript
pdf
Inference at
*
2
1
I
of proof for Lemma
subtype
rel
dep
product
iff
:
.....unproved Inclusion subgoal..... NILNIL
1.
A
: Type
2.
B
:
A
Type
3.
C
: Type
4.
D
:
C
Type
5.
A
r
C
6. (
a
:
A
B
(
a
))
r (
c
:
C
D
(
c
))
7.
a
:
A
8.
x
:
B
(
a
)
x
D
(
a
)
latex
by Assert <
a
,
x
>
(
c
:
C
D
(
c
))
latex
1
: .....assertion..... NILNIL
1:
<
a
,
x
>
(
c
:
C
D
(
c
))
2
:
2:
9. <
a
,
x
>
(
c
:
C
D
(
c
))
2:
x
D
(
a
)
.
Definitions
t
T
,
x
:
A
B
(
x
)
,
x
(
s
)
,
<
a
,
b
>
origin