Nuprl Lemma : ab_binrel_functionality

[T:Type]. ∀[E,E':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (E[x;y] ⇐⇒ E'[x;y]))  ((x,y:T. E[x;y]) <≡>{T} (x,y:T. E'[x;y])))


Proof




Definitions occuring in Statement :  ab_binrel: x,y:T. E[x; y] binrel_eqv: E <≡>{T} E' uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q ab_binrel: x,y:T. E[x; y] binrel_eqv: E <≡>{T} E' member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s1;s2] so_apply: x[s]
Lemmas referenced :  all_wf iff_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalRule hypothesis cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[E,E':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (E[x;y]  \mLeftarrow{}{}\mRightarrow{}  E'[x;y]))  {}\mRightarrow{}  ((x,y:T.  E[x;y])  <\mequiv{}>\{T\}  (x,y:T.  E'[x;y])))



Date html generated: 2016_05_15-PM-00_00_36
Last ObjectModification: 2015_12_26-PM-11_26_39

Theory : gen_algebra_1


Home Index