Nuprl Lemma : ab_binrel_functionality
∀[T:Type]. ∀[E,E':T ⟶ T ⟶ ℙ].  ((∀x,y:T.  (E[x;y] 
⇐⇒ E'[x;y])) 
⇒ ((x,y:T. E[x;y]) <≡>{T} (x,y:T. E'[x;y])))
Proof
Definitions occuring in Statement : 
ab_binrel: x,y:T. E[x; y]
, 
binrel_eqv: E <≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
ab_binrel: x,y:T. E[x; y]
, 
binrel_eqv: E <≡>{T} E'
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
Lemmas referenced : 
all_wf, 
iff_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalRule, 
hypothesis, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[E,E':T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}x,y:T.    (E[x;y]  \mLeftarrow{}{}\mRightarrow{}  E'[x;y]))  {}\mRightarrow{}  ((x,y:T.  E[x;y])  <\mequiv{}>\{T\}  (x,y:T.  E'[x;y])))
Date html generated:
2016_05_15-PM-00_00_36
Last ObjectModification:
2015_12_26-PM-11_26_39
Theory : gen_algebra_1
Home
Index