Nuprl Lemma : ab_binrel_wf

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  (x,y:T. E[x;y] ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  ab_binrel: x,y:T. E[x; y] uall: [x:A]. B[x] prop: so_apply: x[s1;s2] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ab_binrel: x,y:T. E[x; y] uall: [x:A]. B[x] member: t ∈ T so_apply: x[s1;s2] prop:
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality applyEquality hypothesisEquality sqequalHypSubstitution hypothesis axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality isectElimination thin because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (x,y:T.  E[x;y]  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_00_35
Last ObjectModification: 2015_12_26-PM-11_26_47

Theory : gen_algebra_1


Home Index