Nuprl Lemma : action_p_wf
∀[A:Type]. ∀[x:A ⟶ A ⟶ A]. ∀[e:A]. ∀[S:Type]. ∀[f:A ⟶ S ⟶ S].  (IsAction(A;x;e;S;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
action_p: IsAction(A;x;e;S;f)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
action_p: IsAction(A;x;e;S;f)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
Lemmas referenced : 
and_wf, 
uall_wf, 
all_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
applyEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
isect_memberEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[x:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].  \mforall{}[e:A].  \mforall{}[S:Type].  \mforall{}[f:A  {}\mrightarrow{}  S  {}\mrightarrow{}  S].    (IsAction(A;x;e;S;f)  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_02_33
Last ObjectModification:
2015_12_26-PM-11_26_00
Theory : gen_algebra_1
Home
Index