Nuprl Lemma : dec_alt_char
∀[T:Type]. ∀[A:T ⟶ ℙ].  (∀x:T. Dec(A x) 
⇐⇒ (∀x:T. SqStable(A x)) ∧ detach_fun(T;A))
Proof
Definitions occuring in Statement : 
detach_fun: detach_fun(T;A)
, 
sq_stable: SqStable(P)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
all_wf, 
decidable_wf, 
and_wf, 
sq_stable_wf, 
detach_fun_wf, 
sq_stable_from_decidable, 
exists_det_fun, 
exists_det_fun_a
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
independent_functionElimination, 
dependent_functionElimination, 
because_Cache, 
productElimination
Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  \mBbbP{}].    (\mforall{}x:T.  Dec(A  x)  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x:T.  SqStable(A  x))  \mwedge{}  detach\_fun(T;A))
Date html generated:
2016_05_15-PM-00_00_30
Last ObjectModification:
2015_12_26-PM-11_26_46
Theory : gen_algebra_1
Home
Index