Nuprl Lemma : dec_binrel_wf
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ]. (dec_binrel(T;r) ∈ ℙ)
Proof
Definitions occuring in Statement :
dec_binrel: dec_binrel(T;r)
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
dec_binrel: dec_binrel(T;r)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
prop: ℙ
Lemmas referenced :
all_wf,
decidable_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
hypothesis,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
cumulativity,
universeEquality,
isect_memberEquality,
because_Cache
Latex:
\mforall{}[T:Type]. \mforall{}[r:T {}\mrightarrow{} T {}\mrightarrow{} \mBbbP{}]. (dec\_binrel(T;r) \mmember{} \mBbbP{})
Date html generated:
2016_05_15-PM-00_00_43
Last ObjectModification:
2015_12_26-PM-11_26_38
Theory : gen_algebra_1
Home
Index