Nuprl Lemma : ident_wf

[T:Type]. ∀[op:T ⟶ T ⟶ T]. ∀[id:T].  (Ident(T;op;id) ∈ ℙ)


Proof




Definitions occuring in Statement :  ident: Ident(T;op;id) uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  ident: Ident(T;op;id) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s]
Lemmas referenced :  uall_wf and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaEquality applyEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[op:T  {}\mrightarrow{}  T  {}\mrightarrow{}  T].  \mforall{}[id:T].    (Ident(T;op;id)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_02_14
Last ObjectModification: 2015_12_26-PM-11_25_29

Theory : gen_algebra_1


Home Index