Nuprl Lemma : refl_cl_sp_le_rel
∀[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  (refl(T;r) 
⇒ ((r\\00B8) ≡>{T} r))
Proof
Definitions occuring in Statement : 
s_part: E\
, 
refl_cl: Eo
, 
xxrefl: refl(T;E)
, 
binrel_le: E ≡>{T} E'
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
s_part: E\
, 
refl_cl: Eo
, 
binrel_le: E ≡>{T} E'
, 
xxrefl: refl(T;E)
, 
refl: Refl(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
or_wf, 
equal_wf, 
not_wf, 
all_wf, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
productEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
universeEquality, 
functionEquality, 
unionElimination, 
productElimination, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
dependent_set_memberEquality, 
independent_pairFormation, 
setElimination, 
rename, 
setEquality
Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (refl(T;r)  {}\mRightarrow{}  ((r\mbackslash{}\msupzero{})  \mequiv{}>\{T\}  r))
Date html generated:
2016_10_21-AM-11_25_09
Last ObjectModification:
2016_07_12-PM-01_05_42
Theory : gen_algebra_1
Home
Index