Nuprl Lemma : refl_cl_sp_le_rel

[T:Type]. ∀[r:T ⟶ T ⟶ ℙ].  (refl(T;r)  ((r\\00B8) ≡>{T} r))


Proof




Definitions occuring in Statement :  s_part: E\ refl_cl: Eo xxrefl: refl(T;E) binrel_le: E ≡>{T} E' uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  s_part: E\ refl_cl: Eo binrel_le: E ≡>{T} E' xxrefl: refl(T;E) refl: Refl(T;x,y.E[x; y]) uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T prop: and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] or: P ∨ Q guard: {T}
Lemmas referenced :  or_wf equal_wf not_wf all_wf and_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis productEquality applyEquality functionExtensionality lambdaEquality universeEquality functionEquality unionElimination productElimination dependent_functionElimination hyp_replacement equalitySymmetry dependent_set_memberEquality independent_pairFormation setElimination rename setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (refl(T;r)  {}\mRightarrow{}  ((r\mbackslash{}\msupzero{})  \mequiv{}>\{T\}  r))



Date html generated: 2016_10_21-AM-11_25_09
Last ObjectModification: 2016_07_12-PM-01_05_42

Theory : gen_algebra_1


Home Index