Nuprl Lemma : refl_cl_wf

[T:Type]. ∀[E:T ⟶ T ⟶ ℙ].  (Eo ∈ T ⟶ T ⟶ ℙ)


Proof




Definitions occuring in Statement :  refl_cl: Eo uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  refl_cl: Eo uall: [x:A]. B[x] member: t ∈ T prop:
Lemmas referenced :  or_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[E:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (E\msupzero{}  \mmember{}  T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_01_29
Last ObjectModification: 2015_12_26-PM-11_26_10

Theory : gen_algebra_1


Home Index