Nuprl Lemma : s_part_char

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ]. ∀[a,b:T].  (((R\) b) ((R b) ∧ (R a))) ∈ ℙ)


Proof




Definitions occuring in Statement :  s_part: E\ uall: [x:A]. B[x] prop: not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T s_part: E\ prop:
Lemmas referenced :  and_wf not_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin applyEquality hypothesisEquality hypothesis isect_memberEquality axiomEquality because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[a,b:T].    (((R\mbackslash{})  a  b)  =  ((R  a  b)  \mwedge{}  (\mneg{}(R  b  a))))



Date html generated: 2016_05_15-PM-00_01_37
Last ObjectModification: 2015_12_26-PM-11_26_04

Theory : gen_algebra_1


Home Index