Nuprl Lemma : sq_stable__fun_thru_1op
∀[A,B:Type]. ∀[opa:A ⟶ A]. ∀[opb:B ⟶ B]. ∀[f:A ⟶ B]. SqStable(fun_thru_1op(A;B;opa;opb;f))
Proof
Definitions occuring in Statement :
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
,
sq_stable: SqStable(P)
,
uall: ∀[x:A]. B[x]
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
implies: P
⇒ Q
,
sq_stable: SqStable(P)
,
prop: ℙ
Lemmas referenced :
sq_stable__uall,
equal_wf,
sq_stable__equal,
squash_wf,
uall_wf
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
applyEquality,
hypothesis,
independent_functionElimination,
dependent_functionElimination,
axiomEquality,
because_Cache,
isect_memberEquality,
functionEquality,
universeEquality
Latex:
\mforall{}[A,B:Type]. \mforall{}[opa:A {}\mrightarrow{} A]. \mforall{}[opb:B {}\mrightarrow{} B]. \mforall{}[f:A {}\mrightarrow{} B]. SqStable(fun\_thru\_1op(A;B;opa;opb;f))
Date html generated:
2016_05_15-PM-00_02_45
Last ObjectModification:
2015_12_26-PM-11_25_23
Theory : gen_algebra_1
Home
Index