Nuprl Lemma : sq_stable__monot

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀f:T ⟶ T. ((∀x,y:T.  SqStable(R[x;y]))  SqStable(monot(T;x,y.R[x;y];f)))


Proof




Definitions occuring in Statement :  monot: monot(T;x,y.R[x; y];f) sq_stable: SqStable(P) uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q monot: monot(T;x,y.R[x; y];f) member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s1;s2] so_apply: x[s] subtype_rel: A ⊆B
Lemmas referenced :  sq_stable__all all_wf sq_stable_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality functionEquality applyEquality hypothesis independent_functionElimination because_Cache universeEquality dependent_functionElimination cumulativity

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x,y:T.    SqStable(R[x;y]))  {}\mRightarrow{}  SqStable(monot(T;x,y.R[x;y];f)))



Date html generated: 2016_05_15-PM-00_03_01
Last ObjectModification: 2015_12_26-PM-11_25_17

Theory : gen_algebra_1


Home Index