Nuprl Lemma : trans_shift
∀[A,B:Type]. ∀[R:A ⟶ A ⟶ ℙ]. ∀[S:B ⟶ B ⟶ ℙ].
  ∀f:A ⟶ B. (RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f) 
⇒ Trans(B;x,y.S[x;y]) 
⇒ Trans(A;x,y.R[x;y]))
Proof
Definitions occuring in Statement : 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
trans: Trans(T;x,y.E[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
trans: Trans(T;x,y.E[x; y])
, 
rels_iso: RelsIso(T;T';x,y.R[x; y];x,y.R'[x; y];f)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
trans_wf, 
rels_iso_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
applyEquality, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[R:A  {}\mrightarrow{}  A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[S:B  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}f:A  {}\mrightarrow{}  B.  (RelsIso(A;B;x,y.R[x;y];x,y.S[x;y];f)  {}\mRightarrow{}  Trans(B;x,y.S[x;y])  {}\mRightarrow{}  Trans(A;x,y.R[x;y]))
Date html generated:
2016_05_15-PM-00_03_28
Last ObjectModification:
2015_12_26-PM-11_24_59
Theory : gen_algebra_1
Home
Index