Nuprl Lemma : xxorder_eq_order

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (order(T;R) Order(T;x,y.R y) ∈ ℙ)


Proof




Definitions occuring in Statement :  xxorder: order(T;R) order: Order(T;x,y.R[x; y]) uall: [x:A]. B[x] prop: apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T order: Order(T;x,y.R[x; y]) xxorder: order(T;R) xxanti_sym: anti_sym(T;R) xxtrans: trans(T;E) xxrefl: refl(T;E) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] prop:
Lemmas referenced :  and_wf refl_wf trans_wf anti_sym_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (order(T;R)  =  Order(T;x,y.R  x  y))



Date html generated: 2016_05_15-PM-00_01_23
Last ObjectModification: 2015_12_26-PM-11_26_15

Theory : gen_algebra_1


Home Index