Nuprl Lemma : xxorder_eq_order
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (order(T;R) = Order(T;x,y.R x y) ∈ ℙ)
Proof
Definitions occuring in Statement : 
xxorder: order(T;R)
, 
order: Order(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
order: Order(T;x,y.R[x; y])
, 
xxorder: order(T;R)
, 
xxanti_sym: anti_sym(T;R)
, 
xxtrans: trans(T;E)
, 
xxrefl: refl(T;E)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
prop: ℙ
Lemmas referenced : 
and_wf, 
refl_wf, 
trans_wf, 
anti_sym_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
isect_memberEquality, 
axiomEquality, 
because_Cache
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (order(T;R)  =  Order(T;x,y.R  x  y))
Date html generated:
2016_05_15-PM-00_01_23
Last ObjectModification:
2015_12_26-PM-11_26_15
Theory : gen_algebra_1
Home
Index