Nuprl Lemma : xxtrans_imp_sp_trans

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  (trans(T;R)  trans(T;R\))


Proof




Definitions occuring in Statement :  s_part: E\ xxtrans: trans(T;E) uall: [x:A]. B[x] prop: implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  so_apply: x[s1;s2] strict_part: strict_part(x,y.R[x; y];a;b) s_part: E\ xxtrans: trans(T;E)
Lemmas referenced :  trans_imp_sp_trans
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    (trans(T;R)  {}\mRightarrow{}  trans(T;R\mbackslash{}))



Date html generated: 2016_05_15-PM-00_01_41
Last ObjectModification: 2015_12_26-PM-11_26_02

Theory : gen_algebra_1


Home Index