Nuprl Lemma : abgrp_properties
∀[g:AbGrp]. Comm(|g|;*)
Proof
Definitions occuring in Statement : 
abgrp: AbGrp, 
grp_op: *, 
grp_car: |g|, 
comm: Comm(T;op), 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
abgrp: AbGrp, 
grp: Group{i}, 
mon: Mon, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
comm: Comm(T;op)
Lemmas referenced : 
abgrp_wf, 
grp_op_wf, 
grp_car_wf, 
sq_stable__comm
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
axiomEquality
Latex:
\mforall{}[g:AbGrp].  Comm(|g|;*)
Date html generated:
2016_05_15-PM-00_09_39
Last ObjectModification:
2016_01_15-PM-11_06_10
Theory : groups_1
Home
Index