Nuprl Lemma : grp_id_wf

[g:GrpSig]. (e ∈ |g|)


Proof




Definitions occuring in Statement :  grp_id: e grp_car: |g| grp_sig: GrpSig uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T grp_sig: GrpSig grp_id: e grp_car: |g| pi1: fst(t) pi2: snd(t)
Lemmas referenced :  grp_sig_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin sqequalRule hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid

Latex:
\mforall{}[g:GrpSig].  (e  \mmember{}  |g|)



Date html generated: 2016_05_15-PM-00_06_23
Last ObjectModification: 2015_12_26-PM-11_47_31

Theory : groups_1


Home Index