Nuprl Lemma : mon_nat_op_add

[g:IMonoid]. ∀[e:|g|]. ∀[a,b:ℕ].  (((a b) ⋅ e) ((a ⋅ e) (b ⋅ e)) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_nat_op: n ⋅ e imon: IMonoid grp_op: * grp_car: |g| nat: uall: [x:A]. B[x] infix_ap: y add: m equal: t ∈ T
Definitions unfolded in proof :  mon_nat_op: n ⋅ e
Lemmas referenced :  nat_op_add
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalSubstitution sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}[g:IMonoid].  \mforall{}[e:|g|].  \mforall{}[a,b:\mBbbN{}].    (((a  +  b)  \mcdot{}  e)  =  ((a  \mcdot{}  e)  *  (b  \mcdot{}  e)))



Date html generated: 2016_05_15-PM-00_16_58
Last ObjectModification: 2015_12_26-PM-11_39_05

Theory : groups_1


Home Index