Nuprl Definition : ocmon

OCMon ==
  {g:AbMon| 
   (UniformLinorder(|g|;x,y.↑(x ≤b y)) ∧ (=b x,y. ((x ≤b y) ∧b (y ≤b x))) ∈ (|g| ⟶ |g| ⟶ 𝔹)))
   ∧ Cancel(|g|;|g|;*)
   ∧ (∀[z:|g|]. monot(|g|;x,y.↑(x ≤b y);λw.(z w)))} 



Definitions occuring in Statement :  abmonoid: AbMon grp_op: * grp_le: b grp_eq: =b grp_car: |g| monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) ulinorder: UniformLinorder(T;x,y.R[x; y]) band: p ∧b q assert: b bool: 𝔹 uall: [x:A]. B[x] infix_ap: y and: P ∧ Q set: {x:A| B[x]}  lambda: λx.A[x] function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  abmonoid: AbMon ulinorder: UniformLinorder(T;x,y.R[x; y]) equal: t ∈ T function: x:A ⟶ B[x] bool: 𝔹 grp_eq: =b band: p ∧b q and: P ∧ Q cancel: Cancel(T;S;op) uall: [x:A]. B[x] monot: monot(T;x,y.R[x; y];f) grp_car: |g| assert: b grp_le: b lambda: λx.A[x] infix_ap: y grp_op: *

Latex:
OCMon  ==
    \{g:AbMon| 
      (UniformLinorder(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y))  \mwedge{}  (=\msubb{}  =  (\mlambda{}x,y.  ((x  \mleq{}\msubb{}  y)  \mwedge{}\msubb{}  (y  \mleq{}\msubb{}  x)))))
      \mwedge{}  Cancel(|g|;|g|;*)
      \mwedge{}  (\mforall{}[z:|g|].  monot(|g|;x,y.\muparrow{}(x  \mleq{}\msubb{}  y);\mlambda{}w.(z  *  w)))\} 



Date html generated: 2016_05_15-PM-00_11_03
Last ObjectModification: 2015_09_23-AM-06_24_40

Theory : groups_1


Home Index