Nuprl Lemma : integ_dom_p_wf

[r:CRng]. (IsIntegDom(r) ∈ ℙ)


Proof




Definitions occuring in Statement :  integ_dom_p: IsIntegDom(r) crng: CRng uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  integ_dom_p: IsIntegDom(r) uall: [x:A]. B[x] member: t ∈ T prop: and: P ∧ Q crng: CRng rng: Rng nequal: a ≠ b ∈  so_lambda: λ2x.t[x] implies:  Q infix_ap: y so_apply: x[s] all: x:A. B[x]
Lemmas referenced :  nequal_wf rng_car_wf rng_zero_wf rng_one_wf all_wf not_wf equal_wf infix_ap_wf rng_times_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut productEquality extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis lambdaEquality functionEquality hypothesisEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:CRng].  (IsIntegDom(r)  \mmember{}  \mBbbP{})



Date html generated: 2017_10_01-AM-08_17_33
Last ObjectModification: 2017_02_28-PM-02_02_40

Theory : rings_1


Home Index