Nuprl Lemma : integ_dom_p_wf
∀[r:CRng]. (IsIntegDom(r) ∈ ℙ)
Proof
Definitions occuring in Statement : 
integ_dom_p: IsIntegDom(r)
, 
crng: CRng
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
integ_dom_p: IsIntegDom(r)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
and: P ∧ Q
, 
crng: CRng
, 
rng: Rng
, 
nequal: a ≠ b ∈ T 
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
infix_ap: x f y
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
nequal_wf, 
rng_car_wf, 
rng_zero_wf, 
rng_one_wf, 
all_wf, 
not_wf, 
equal_wf, 
infix_ap_wf, 
rng_times_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
productEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
lambdaEquality, 
functionEquality, 
hypothesisEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:CRng].  (IsIntegDom(r)  \mmember{}  \mBbbP{})
Date html generated:
2017_10_01-AM-08_17_33
Last ObjectModification:
2017_02_28-PM-02_02_40
Theory : rings_1
Home
Index