Nuprl Lemma : max_ideal_p_wf

[r:RngSig]. ∀[m:|r| ⟶ ℙ].  (IsMaxIdeal(r;m) ∈ ℙ)


Proof




Definitions occuring in Statement :  max_ideal_p: IsMaxIdeal(r;m) rng_car: |r| rng_sig: RngSig uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  max_ideal_p: IsMaxIdeal(r;m) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s] prop:
Lemmas referenced :  all_wf rng_car_wf iff_wf not_wf exists_wf rng_plus_wf rng_times_wf rng_minus_wf rng_one_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality isect_memberEquality because_Cache

Latex:
\mforall{}[r:RngSig].  \mforall{}[m:|r|  {}\mrightarrow{}  \mBbbP{}].    (IsMaxIdeal(r;m)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_24_51
Last ObjectModification: 2015_12_27-AM-00_00_07

Theory : rings_1


Home Index