Nuprl Lemma : one_ideal_wf
∀[r:CRng]. ((1r) ∈ Ideal(r){i})
Proof
Definitions occuring in Statement : 
one_ideal: (1r)
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
one_ideal: (1r)
, 
ideal: Ideal(r){i}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
crng: CRng
, 
rng: Rng
, 
ideal_p: S Ideal of R
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
subgrp_p: s SubGrp of g
, 
add_grp_of_rng: r↓+gp
, 
grp_car: |g|
, 
pi1: fst(t)
Lemmas referenced : 
crng_wf, 
true_wf, 
rng_car_wf, 
ideal_p_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
dependent_set_memberEquality, 
lambdaEquality, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
because_Cache
Latex:
\mforall{}[r:CRng].  ((1r)  \mmember{}  Ideal(r)\{i\})
Date html generated:
2016_05_15-PM-00_23_05
Last ObjectModification:
2015_12_27-AM-00_01_03
Theory : rings_1
Home
Index