Nuprl Lemma : p-reduce-eqmod

p:ℕ+. ∀n:ℕ. ∀i:ℤ.  (i mod(p^n) ≡ mod p^n)


Proof




Definitions occuring in Statement :  p-reduce: mod(p^n) eqmod: a ≡ mod m exp: i^n nat_plus: + nat: all: x:A. B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] p-reduce: mod(p^n) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  mod-eqmod exp_wf_nat_plus nat_wf nat_plus_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis intEquality

Latex:
\mforall{}p:\mBbbN{}\msupplus{}.  \mforall{}n:\mBbbN{}.  \mforall{}i:\mBbbZ{}.    (i  mod(p\^{}n)  \mequiv{}  i  mod  p\^{}n)



Date html generated: 2018_05_21-PM-03_17_54
Last ObjectModification: 2018_05_19-AM-08_08_52

Theory : rings_1


Home Index