Nuprl Definition : pa-inv

pa-inv(p;x) ==
  let n,a 
  in if (n =z 0)
     then eval mu(λi.(¬b(a (i 1) =z 0))) in
          let j,b p-unitize(p;a;k 1) 
          in <j, p-inv(p;b)>
     else <0, p^n(p) p-inv(p;a)>
     fi 



Definitions occuring in Statement :  p-unitize: p-unitize(p;a;n) p-inv: p-inv(p;a) p-int: k(p) p-mul: y fastexp: i^n mu: mu(f) callbyvalue: callbyvalue bnot: ¬bb ifthenelse: if then else fi  eq_int: (i =z j) apply: a lambda: λx.A[x] spread: spread def pair: <a, b> add: m natural_number: $n
Definitions occuring in definition :  ifthenelse: if then else fi  callbyvalue: callbyvalue mu: mu(f) lambda: λx.A[x] bnot: ¬bb eq_int: (i =z j) apply: a spread: spread def p-unitize: p-unitize(p;a;n) add: m pair: <a, b> natural_number: $n p-mul: y p-int: k(p) fastexp: i^n p-inv: p-inv(p;a)
FDL editor aliases :  pa-inv

Latex:
pa-inv(p;x)  ==
    let  n,a  =  x 
    in  if  (n  =\msubz{}  0)
          then  eval  k  =  mu(\mlambda{}i.(\mneg{}\msubb{}(a  (i  +  1)  =\msubz{}  0)))  in
                    let  j,b  =  p-unitize(p;a;k  +  1) 
                    in  <j,  p-inv(p;b)>
          else  ɘ,  p\^{}n(p)  *  p-inv(p;a)>
          fi 



Date html generated: 2018_05_21-PM-03_28_41
Last ObjectModification: 2018_02_05-AM-11_17_07

Theory : rings_1


Home Index