Nuprl Lemma : ring_divs_wf

[r:RngSig]. ∀[p,q:|r|].  (p in r ∈ ℙ)


Proof




Definitions occuring in Statement :  ring_divs: in r rng_car: |r| rng_sig: RngSig uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  ring_divs: in r uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] infix_ap: y so_apply: x[s]
Lemmas referenced :  exists_wf rng_car_wf equal_wf rng_times_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality applyEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache

Latex:
\mforall{}[r:RngSig].  \mforall{}[p,q:|r|].    (p  |  q  in  r  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_22_14
Last ObjectModification: 2015_12_27-AM-00_01_29

Theory : rings_1


Home Index