Nuprl Lemma : ring_divs_wf
∀[r:RngSig]. ∀[p,q:|r|].  (p | q in r ∈ ℙ)
Proof
Definitions occuring in Statement : 
ring_divs: a | b in r
, 
rng_car: |r|
, 
rng_sig: RngSig
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
ring_divs: a | b in r
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
infix_ap: x f y
, 
so_apply: x[s]
Lemmas referenced : 
exists_wf, 
rng_car_wf, 
equal_wf, 
rng_times_wf, 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
applyEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache
Latex:
\mforall{}[r:RngSig].  \mforall{}[p,q:|r|].    (p  |  q  in  r  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_22_14
Last ObjectModification:
2015_12_27-AM-00_01_29
Theory : rings_1
Home
Index