Nuprl Definition : ring_hom

RingHom(R;S) ==  {f:|R| ⟶ |S|| FunThru2op(|R|;|S|;+R;+S;f) ∧ FunThru2op(|R|;|S|;*;*;f) ∧ ((f 1) 1 ∈ |S|)} 



Definitions occuring in Statement :  rng_one: 1 rng_times: * rng_plus: +r rng_car: |r| fun_thru_2op: FunThru2op(A;B;opa;opb;f) and: P ∧ Q set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] equal: t ∈ T
Definitions occuring in definition :  set: {x:A| B[x]}  function: x:A ⟶ B[x] rng_plus: +r and: P ∧ Q fun_thru_2op: FunThru2op(A;B;opa;opb;f) rng_times: * equal: t ∈ T rng_car: |r| apply: a rng_one: 1

Latex:
RingHom(R;S)  ==
    \{f:|R|  {}\mrightarrow{}  |S||  FunThru2op(|R|;|S|;+R;+S;f)  \mwedge{}  FunThru2op(|R|;|S|;*;*;f)  \mwedge{}  ((f  1)  =  1)\} 



Date html generated: 2016_05_15-PM-00_25_11
Last ObjectModification: 2015_09_23-AM-06_26_03

Theory : rings_1


Home Index