Nuprl Lemma : ring_non_triv_wf
∀[r:Rng]. (r ≠ 0 ∈ ℙ)
Proof
Definitions occuring in Statement : 
ring_non_triv: r ≠ 0
, 
rng: Rng
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
Definitions unfolded in proof : 
ring_non_triv: r ≠ 0
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng: Rng
Lemmas referenced : 
nequal_wf, 
rng_car_wf, 
rng_one_wf, 
rng_zero_wf, 
rng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[r:Rng].  (r  \mneq{}  0  \mmember{}  \mBbbP{})
Date html generated:
2016_05_15-PM-00_22_19
Last ObjectModification:
2015_12_27-AM-00_01_27
Theory : rings_1
Home
Index