Nuprl Lemma : ring_non_triv_wf

[r:Rng]. (r ≠ 0 ∈ ℙ)


Proof




Definitions occuring in Statement :  ring_non_triv: r ≠ 0 rng: Rng uall: [x:A]. B[x] prop: member: t ∈ T
Definitions unfolded in proof :  ring_non_triv: r ≠ 0 uall: [x:A]. B[x] member: t ∈ T rng: Rng
Lemmas referenced :  nequal_wf rng_car_wf rng_one_wf rng_zero_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[r:Rng].  (r  \mneq{}  0  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_22_19
Last ObjectModification: 2015_12_27-AM-00_01_27

Theory : rings_1


Home Index