Nuprl Lemma : ring_term_value_mul_lemma

r,b,a,f:Top.  (ring_term_value(f;a (*) b) ring_term_value(f;a) ring_term_value(f;b))


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) rng_times: * itermMultiply: left (*) right top: Top infix_ap: y all: x:A. B[x] sqequal: t
Definitions unfolded in proof :  member: t ∈ T all: x:A. B[x] int_term_ind: int_term_ind itermMultiply: left (*) right ring_term_value: ring_term_value(f;t)
Lemmas referenced :  top_wf
Rules used in proof :  hypothesis extract_by_obid introduction cut lambdaFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}r,b,a,f:Top.    (ring\_term\_value(f;a  (*)  b)  \msim{}  ring\_term\_value(f;a)  *  ring\_term\_value(f;b))



Date html generated: 2018_05_21-PM-03_15_32
Last ObjectModification: 2018_01_25-PM-02_16_49

Theory : rings_1


Home Index