Nuprl Lemma : ring_term_value_mul_lemma
∀r,b,a,f:Top.  (ring_term_value(f;a (*) b) ~ ring_term_value(f;a) * ring_term_value(f;b))
Proof
Definitions occuring in Statement : 
ring_term_value: ring_term_value(f;t)
, 
rng_times: *
, 
itermMultiply: left (*) right
, 
top: Top
, 
infix_ap: x f y
, 
all: ∀x:A. B[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
int_term_ind: int_term_ind, 
itermMultiply: left (*) right
, 
ring_term_value: ring_term_value(f;t)
Lemmas referenced : 
top_wf
Rules used in proof : 
hypothesis, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
computationStep, 
sqequalTransitivity, 
sqequalReflexivity, 
sqequalRule, 
sqequalSubstitution
Latex:
\mforall{}r,b,a,f:Top.    (ring\_term\_value(f;a  (*)  b)  \msim{}  ring\_term\_value(f;a)  *  ring\_term\_value(f;b))
Date html generated:
2018_05_21-PM-03_15_32
Last ObjectModification:
2018_01_25-PM-02_16_49
Theory : rings_1
Home
Index