Nuprl Lemma : ring_term_value_wf
∀[r:Rng]. ∀[f:ℤ ⟶ |r|]. ∀[t:int_term()].  (ring_term_value(f;t) ∈ |r|)
Proof
Definitions occuring in Statement : 
ring_term_value: ring_term_value(f;t)
, 
rng: Rng
, 
rng_car: |r|
, 
int_term: int_term()
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
int: ℤ
Definitions unfolded in proof : 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
rng: Rng
, 
ring_term_value: ring_term_value(f;t)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rng_wf, 
rng_times_wf, 
rng_minus_wf, 
int_term_wf, 
rng_plus_wf, 
infix_ap_wf, 
int-to-ring_wf, 
rng_car_wf, 
int_term_ind_wf_simple
Rules used in proof : 
functionEquality, 
isect_memberEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
functionExtensionality, 
applyEquality, 
intEquality, 
lambdaEquality, 
hypothesisEquality, 
hypothesis, 
because_Cache, 
rename, 
setElimination, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[r:Rng].  \mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  |r|].  \mforall{}[t:int\_term()].    (ring\_term\_value(f;t)  \mmember{}  |r|)
Date html generated:
2018_05_21-PM-03_15_25
Last ObjectModification:
2018_01_25-PM-02_16_33
Theory : rings_1
Home
Index