Nuprl Lemma : ring_term_value_wf

[r:Rng]. ∀[f:ℤ ⟶ |r|]. ∀[t:int_term()].  (ring_term_value(f;t) ∈ |r|)


Proof




Definitions occuring in Statement :  ring_term_value: ring_term_value(f;t) rng: Rng rng_car: |r| int_term: int_term() uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) so_apply: x[s] so_lambda: λ2x.t[x] rng: Rng ring_term_value: ring_term_value(f;t) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rng_wf rng_times_wf rng_minus_wf int_term_wf rng_plus_wf infix_ap_wf int-to-ring_wf rng_car_wf int_term_ind_wf_simple
Rules used in proof :  functionEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality functionExtensionality applyEquality intEquality lambdaEquality hypothesisEquality hypothesis because_Cache rename setElimination thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[r:Rng].  \mforall{}[f:\mBbbZ{}  {}\mrightarrow{}  |r|].  \mforall{}[t:int\_term()].    (ring\_term\_value(f;t)  \mmember{}  |r|)



Date html generated: 2018_05_21-PM-03_15_25
Last ObjectModification: 2018_01_25-PM-02_16_33

Theory : rings_1


Home Index