Nuprl Lemma : rng_car_qinc
∀[r:CRng]. ∀[a:Ideal(r){i}].  ((∀x:|r|. SqStable(a x)) 
⇒ (∀[d:detach_fun(|r|;a)]. (|r| ⊆r |r / d|)))
Proof
Definitions occuring in Statement : 
quot_ring: r / d
, 
ideal: Ideal(r){i}
, 
crng: CRng
, 
rng_car: |r|
, 
detach_fun: detach_fun(T;A)
, 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
quot_ring: r / d
, 
rng_car: |r|
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
crng: CRng
, 
rng: Rng
, 
ideal: Ideal(r){i}
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
Lemmas referenced : 
quot_ring_car_qinc, 
detach_fun_wf, 
rng_car_wf, 
all_wf, 
sq_stable_wf, 
ideal_wf, 
crng_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
axiomEquality, 
setElimination, 
rename, 
lambdaEquality, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
isect_memberEquality
Latex:
\mforall{}[r:CRng].  \mforall{}[a:Ideal(r)\{i\}].
    ((\mforall{}x:|r|.  SqStable(a  x))  {}\mRightarrow{}  (\mforall{}[d:detach\_fun(|r|;a)].  (|r|  \msubseteq{}r  |r  /  d|)))
Date html generated:
2019_10_15-AM-10_33_49
Last ObjectModification:
2018_09_18-PM-00_38_49
Theory : rings_1
Home
Index