Nuprl Lemma : rng_eq_wf
∀[r:RngSig]. (=b ∈ |r| ⟶ |r| ⟶ 𝔹)
Proof
Definitions occuring in Statement : 
rng_eq: =b
, 
rng_car: |r|
, 
rng_sig: RngSig
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rng_sig: RngSig
, 
rng_eq: =b
, 
rng_car: |r|
, 
pi1: fst(t)
, 
pi2: snd(t)
Lemmas referenced : 
rng_sig_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
hypothesisEquality, 
hypothesis, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid
Latex:
\mforall{}[r:RngSig].  (=\msubb{}  \mmember{}  |r|  {}\mrightarrow{}  |r|  {}\mrightarrow{}  \mBbbB{})
Date html generated:
2016_05_15-PM-00_20_02
Last ObjectModification:
2015_12_27-AM-00_03_09
Theory : rings_1
Home
Index