Nuprl Lemma : rng_hom_p_wf

[r,s:RngSig]. ∀[f:|r| ⟶ |s|].  (rng_hom_p(r;s;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  rng_hom_p: rng_hom_p(r;s;f) rng_car: |r| rng_sig: RngSig uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  rng_hom_p: rng_hom_p(r;s;f) uall: [x:A]. B[x] member: t ∈ T
Lemmas referenced :  and_wf fun_thru_2op_wf rng_car_wf rng_plus_wf rng_times_wf equal_wf rng_one_wf rng_sig_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality isect_memberEquality because_Cache

Latex:
\mforall{}[r,s:RngSig].  \mforall{}[f:|r|  {}\mrightarrow{}  |s|].    (rng\_hom\_p(r;s;f)  \mmember{}  \mBbbP{})



Date html generated: 2016_05_15-PM-00_24_56
Last ObjectModification: 2015_12_27-AM-00_00_18

Theory : rings_1


Home Index