Nuprl Lemma : rng_times_one

[r:Rng]. ∀[a:|r|].  (((a 1) a ∈ |r|) ∧ ((1 a) a ∈ |r|))


Proof




Definitions occuring in Statement :  rng: Rng rng_one: 1 rng_times: * rng_car: |r| uall: [x:A]. B[x] infix_ap: y and: P ∧ Q equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mul_mon_of_rng: r↓xmn grp_car: |g| pi1: fst(t) grp_op: * pi2: snd(t) grp_id: e and: P ∧ Q rng: Rng
Lemmas referenced :  mon_ident mul_mon_of_rng_wf_c rng_car_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule isect_memberEquality productElimination independent_pairEquality axiomEquality setElimination rename

Latex:
\mforall{}[r:Rng].  \mforall{}[a:|r|].    (((a  *  1)  =  a)  \mwedge{}  ((1  *  a)  =  a))



Date html generated: 2016_05_15-PM-00_21_32
Last ObjectModification: 2015_12_27-AM-00_02_05

Theory : rings_1


Home Index