Nuprl Lemma : algebra_times_assoc

[A:Rng]. ∀[m:algebra{i:l}(A)]. ∀[x,y,z:m.car].  ((x m.times (y m.times z)) ((x m.times y) m.times z) ∈ m.car)


Proof




Definitions occuring in Statement :  algebra: algebra{i:l}(A) alg_times: a.times alg_car: a.car uall: [x:A]. B[x] infix_ap: y equal: t ∈ T rng: Rng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] and: P ∧ Q rng: Rng algebra: algebra{i:l}(A) module: A-Module guard: {T} monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op)
Lemmas referenced :  algebra_properties alg_car_wf rng_car_wf algebra_wf rng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality hypothesis productElimination isectElimination setElimination rename sqequalRule isect_memberEquality axiomEquality because_Cache

Latex:
\mforall{}[A:Rng].  \mforall{}[m:algebra\{i:l\}(A)].  \mforall{}[x,y,z:m.car].
    ((x  m.times  (y  m.times  z))  =  ((x  m.times  y)  m.times  z))



Date html generated: 2016_05_16-AM-07_27_30
Last ObjectModification: 2015_12_28-PM-05_07_56

Theory : algebras_1


Home Index