Nuprl Lemma : count_bsublist_a

s:DSet. ∀as,bs:|s| List.  (↑bsublist(s;as;bs) ⇐⇒ ∀c:|s|. ((c #∈ as) ≤ (c #∈ bs)))


Proof




Definitions occuring in Statement :  bsublist: bsublist(s;as;bs) count: #∈ as list: List assert: b le: A ≤ B all: x:A. B[x] iff: ⇐⇒ Q dset: DSet set_car: |p|
Definitions unfolded in proof :  guard: {T}
Lemmas referenced :  count_bsublist
Rules used in proof :  cut lemma_by_obid sqequalHypSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep hypothesis

Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}bsublist(s;as;bs)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  (c  \#\mmember{}  bs)))



Date html generated: 2016_05_16-AM-07_41_29
Last ObjectModification: 2015_12_28-PM-05_41_47

Theory : list_2


Home Index