Nuprl Lemma : count_bsublist_a
∀s:DSet. ∀as,bs:|s| List.  (↑bsublist(s;as;bs) 
⇐⇒ ∀c:|s|. ((c #∈ as) ≤ (c #∈ bs)))
Proof
Definitions occuring in Statement : 
bsublist: bsublist(s;as;bs)
, 
count: a #∈ as
, 
list: T List
, 
assert: ↑b
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
guard: {T}
Lemmas referenced : 
count_bsublist
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
hypothesis
Latex:
\mforall{}s:DSet.  \mforall{}as,bs:|s|  List.    (\muparrow{}bsublist(s;as;bs)  \mLeftarrow{}{}\mRightarrow{}  \mforall{}c:|s|.  ((c  \#\mmember{}  as)  \mleq{}  (c  \#\mmember{}  bs)))
Date html generated:
2016_05_16-AM-07_41_29
Last ObjectModification:
2015_12_28-PM-05_41_47
Theory : list_2
Home
Index