Nuprl Lemma : distinct_nil_lemma
∀s:Top. (distinct{s}([]) ~ tt)
Proof
Definitions occuring in Statement : 
distinct: distinct{s}(ps), 
nil: [], 
btrue: tt, 
top: Top, 
all: ∀x:A. B[x], 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
distinct: distinct{s}(ps), 
so_lambda: λ2x y.t[x; y], 
member: t ∈ T, 
top: Top, 
so_apply: x[s1;s2], 
band_mon: <𝔹,∧b>, 
grp_id: e, 
pi2: snd(t), 
pi1: fst(t)
Lemmas referenced : 
mon_htfor_nil_lemma, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis
Latex:
\mforall{}s:Top.  (distinct\{s\}([])  \msim{}  tt)
 Date html generated: 
2016_05_16-AM-07_37_25
 Last ObjectModification: 
2015_12_28-PM-05_45_17
Theory : list_2
Home
Index