Nuprl Lemma : rng_mssum_elim_lemma
∀[s,r,as,f:Top].  (Σx ∈ mk_mset(as). f[x] ~ Σ{r} x ∈ as. f[x])
Proof
Definitions occuring in Statement : 
rng_mssum: rng_mssum, 
mk_mset: mk_mset(as), 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
sqequal: s ~ t, 
rng_lsum: Σ{r} x ∈ as. f[x]
Definitions unfolded in proof : 
rng_lsum: Σ{r} x ∈ as. f[x], 
mk_mset: mk_mset(as), 
rng_mssum: rng_mssum, 
mset_for: mset_for, 
mon_for: For{g} x ∈ as. f[x], 
add_grp_of_rng: r↓+gp, 
grp_op: *, 
pi2: snd(t), 
pi1: fst(t), 
grp_id: e, 
for: For{T,op,id} x ∈ as. f[x], 
tlambda: λx:T. b[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Lemmas referenced : 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[s,r,as,f:Top].    (\mSigma{}x  \mmember{}  mk\_mset(as).  f[x]  \msim{}  \mSigma{}\{r\}  x  \mmember{}  as.  f[x])
Date html generated:
2018_05_22-AM-07_46_04
Last ObjectModification:
2018_05_19-AM-08_30_25
Theory : list_3
Home
Index