Nuprl Lemma : comb_for_extend_perm_wf
λn,p,z. ↑{n}(p) ∈ n:ℕ ⟶ p:Sym(n) ⟶ (↓True) ⟶ Sym(n + 1)
Proof
Definitions occuring in Statement : 
extend_perm: ↑{n}(p), 
sym_grp: Sym(n), 
nat: ℕ, 
squash: ↓T, 
true: True, 
member: t ∈ T, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
add: n + m, 
natural_number: $n
Definitions unfolded in proof : 
member: t ∈ T, 
squash: ↓T, 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
sym_grp: Sym(n), 
nat: ℕ
Lemmas referenced : 
extend_perm_wf, 
squash_wf, 
true_wf, 
perm_wf, 
int_seg_wf, 
nat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename
Latex:
\mlambda{}n,p,z.  \muparrow{}\{n\}(p)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  p:Sym(n)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  Sym(n  +  1)
 Date html generated: 
2019_10_16-PM-00_59_56
 Last ObjectModification: 
2018_10_08-AM-09_14_25
Theory : perms_1
Home
Index