Nuprl Lemma : comb_for_extend_permf_wf

λn,p,z. extend_permf(p;n) ∈ n:ℕ ⟶ p:(ℕn ⟶ ℕn) ⟶ (↓True) ⟶ ℕ1 ⟶ ℕ1


Proof




Definitions occuring in Statement :  extend_permf: extend_permf(pf;n) int_seg: {i..j-} nat: squash: T true: True member: t ∈ T lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n
Definitions unfolded in proof :  member: t ∈ T squash: T all: x:A. B[x] uall: [x:A]. B[x] prop: nat:
Lemmas referenced :  extend_permf_wf squash_wf true_wf int_seg_wf nat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaEquality_alt sqequalHypSubstitution imageElimination cut introduction extract_by_obid dependent_functionElimination thin hypothesisEquality equalityTransitivity hypothesis equalitySymmetry universeIsType isectElimination functionIsType natural_numberEquality setElimination rename inhabitedIsType

Latex:
\mlambda{}n,p,z.  extend\_permf(p;n)  \mmember{}  n:\mBbbN{}  {}\mrightarrow{}  p:(\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n)  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbN{}n  +  1  {}\mrightarrow{}  \mBbbN{}n  +  1



Date html generated: 2019_10_16-PM-00_59_49
Last ObjectModification: 2018_10_08-AM-09_20_23

Theory : perms_1


Home Index