Nuprl Lemma : comb_for_perm_wf
λT,z. Perm(T) ∈ T:Type ⟶ (↓True) ⟶ Type
Proof
Definitions occuring in Statement : 
perm: Perm(T)
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
Lemmas referenced : 
perm_wf, 
squash_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
universeIsType, 
isectElimination, 
universeEquality
Latex:
\mlambda{}T,z.  Perm(T)  \mmember{}  T:Type  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  Type
Date html generated:
2019_10_16-PM-00_58_38
Last ObjectModification:
2018_10_08-AM-09_49_01
Theory : perms_1
Home
Index