Nuprl Lemma : cons_cons_permr

T:Type. ∀a,a':T. ∀as,as':T List.  ((as ≡(T) as')  ([a; [a' as]] ≡(T) [a'; [a as']]))


Proof




Definitions occuring in Statement :  permr: as ≡(T) bs cons: [a b] list: List all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop:
Lemmas referenced :  permr_functionality_wrt_permr cons_wf permr_weakening cons_functionality_wrt_permr permr_inversion hd_two_swap_permr permr_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache isectElimination hypothesis independent_functionElimination productElimination universeIsType inhabitedIsType instantiate universeEquality

Latex:
\mforall{}T:Type.  \mforall{}a,a':T.  \mforall{}as,as':T  List.    ((as  \mequiv{}(T)  as')  {}\mRightarrow{}  ([a;  [a'  /  as]]  \mequiv{}(T)  [a';  [a  /  as']]))



Date html generated: 2020_05_20-AM-09_35_28
Last ObjectModification: 2020_01_08-PM-06_00_20

Theory : perms_2


Home Index