Nuprl Lemma : comb_for_before_wf
λa,ps,u,z. before(u;ps) ∈ a:DSet ⟶ ps:(|a| List) ⟶ u:|a| ⟶ (↓True) ⟶ 𝔹
Proof
Definitions occuring in Statement : 
before: before(u;ps)
, 
list: T List
, 
bool: 𝔹
, 
squash: ↓T
, 
true: True
, 
member: t ∈ T
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
dset: DSet
, 
set_car: |p|
Definitions unfolded in proof : 
member: t ∈ T
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
dset: DSet
Lemmas referenced : 
before_wf, 
squash_wf, 
true_wf, 
set_car_wf, 
list_wf, 
dset_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
cut, 
lemma_by_obid, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
isectElimination, 
setElimination, 
rename
Latex:
\mlambda{}a,ps,u,z.  before(u;ps)  \mmember{}  a:DSet  {}\mrightarrow{}  ps:(|a|  List)  {}\mrightarrow{}  u:|a|  {}\mrightarrow{}  (\mdownarrow{}True)  {}\mrightarrow{}  \mBbbB{}
Date html generated:
2016_05_16-AM-08_14_55
Last ObjectModification:
2015_12_28-PM-06_28_52
Theory : polynom_2
Home
Index