Nuprl Lemma : oalist_cases_c
∀a:LOSet. ∀b:AbDMon. ∀Q:|oal(a;b)| ⟶ ℙ.
  (Q[00]
  ⇒ (∀ws:|oal(a;b)|. ∀x:|a|. ∀y:|b|.  ((↑before(x;map(λx.(fst(x));ws))) ⇒ (¬(y = e ∈ |b|)) ⇒ Q[oal_cons_pr(x;y;ws)]))
  ⇒ {∀ws:|oal(a;b)|. Q[ws]})
Proof
Definitions occuring in Statement : 
oal_cons_pr: oal_cons_pr(x;y;ws), 
oal_nil: 00, 
oalist: oal(a;b), 
before: before(u;ps), 
map: map(f;as), 
assert: ↑b, 
prop: ℙ, 
guard: {T}, 
so_apply: x[s], 
pi1: fst(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
equal: s = t ∈ T, 
abdmonoid: AbDMon, 
grp_id: e, 
grp_car: |g|, 
loset: LOSet, 
set_car: |p|
Definitions unfolded in proof : 
oal_cons_pr: oal_cons_pr(x;y;ws), 
oal_nil: 00
Lemmas referenced : 
oalist_cases_a
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lemma_by_obid
Latex:
\mforall{}a:LOSet.  \mforall{}b:AbDMon.  \mforall{}Q:|oal(a;b)|  {}\mrightarrow{}  \mBbbP{}.
    (Q[00]
    {}\mRightarrow{}  (\mforall{}ws:|oal(a;b)|.  \mforall{}x:|a|.  \mforall{}y:|b|.
                ((\muparrow{}before(x;map(\mlambda{}x.(fst(x));ws)))  {}\mRightarrow{}  (\mneg{}(y  =  e))  {}\mRightarrow{}  Q[oal\_cons\_pr(x;y;ws)]))
    {}\mRightarrow{}  \{\mforall{}ws:|oal(a;b)|.  Q[ws]\})
 Date html generated: 
2016_05_16-AM-08_16_06
 Last ObjectModification: 
2015_12_28-PM-06_28_27
Theory : polynom_2
Home
Index