Nuprl Lemma : bm_count_T
∀[key,value,cnt,left,right:Top].  (bm_count(bm_T(key;value;cnt;left;right)) ~ 1 + bm_count(left) + bm_count(right))
Proof
Definitions occuring in Statement : 
bm_count: bm_count(m), 
bm_T: bm_T(key;value;cnt;left;right), 
uall: ∀[x:A]. B[x], 
top: Top, 
add: n + m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
bm_count: bm_count(m), 
bm_T: bm_T(key;value;cnt;left;right), 
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]), 
uall: ∀[x:A]. B[x], 
member: t ∈ T
Latex:
\mforall{}[key,value,cnt,left,right:Top].
    (bm\_count(bm\_T(key;value;cnt;left;right))  \msim{}  1  +  bm\_count(left)  +  bm\_count(right))
 Date html generated: 
2016_05_17-PM-01_39_11
 Last ObjectModification: 
2015_12_28-PM-08_09_51
Theory : binary-map
Home
Index