Nuprl Lemma : bm_exists_downeq_wf
∀[T,Key:Type]. ∀[compare:bm_compare(Key)]. ∀[m:binary-map(T;Key)]. ∀[k:Key]. ∀[p:T ⟶ 𝔹].
  (bm_exists_downeq(compare;m;k;p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bm_exists_downeq: bm_exists_downeq(compare;m;k;p), 
bm_compare: bm_compare(K), 
binary-map: binary-map(T;Key), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bm_exists_downeq: bm_exists_downeq(compare;m;k;p), 
so_lambda: so_lambda(x,y,z,u,v,w,q.t[x;y;z;u;v;w;q]), 
bm_compare: bm_compare(K), 
so_apply: x[s], 
so_apply: x[a;b;c;d;e;f;g]
Latex:
\mforall{}[T,Key:Type].  \mforall{}[compare:bm\_compare(Key)].  \mforall{}[m:binary-map(T;Key)].  \mforall{}[k:Key].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].
    (bm\_exists\_downeq(compare;m;k;p)  \mmember{}  \mBbbB{})
 Date html generated: 
2016_05_17-PM-01_42_03
 Last ObjectModification: 
2015_12_28-PM-08_08_51
Theory : binary-map
Home
Index