Nuprl Lemma : bm_exists_wf
∀[T,Key:Type]. ∀[m:binary-map(T;Key)]. ∀[p:T ⟶ 𝔹].  (bm_exists(m;p) ∈ 𝔹)
Proof
Definitions occuring in Statement : 
bm_exists: bm_exists(m;p), 
binary-map: binary-map(T;Key), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bm_exists: bm_exists(m;p), 
binary-map: binary-map(T;Key), 
so_lambda: so_lambda(x,y,z,u,v,w,q.t[x;y;z;u;v;w;q]), 
so_apply: x[s], 
so_apply: x[a;b;c;d;e;f;g]
Latex:
\mforall{}[T,Key:Type].  \mforall{}[m:binary-map(T;Key)].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].    (bm\_exists(m;p)  \mmember{}  \mBbbB{})
 Date html generated: 
2016_05_17-PM-01_41_58
 Last ObjectModification: 
2015_12_28-PM-08_08_30
Theory : binary-map
Home
Index