Nuprl Lemma : bm_firsti_wf
∀[T,Key:Type]. ∀[m:binary_map(T;Key)].  (bm_firsti(m) ∈ Key × T?)
Proof
Definitions occuring in Statement : 
bm_firsti: bm_firsti(m), 
binary_map: binary_map(T;Key), 
uall: ∀[x:A]. B[x], 
unit: Unit, 
member: t ∈ T, 
product: x:A × B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bm_firsti: bm_firsti(m), 
so_lambda: so_lambda(x,y,z,u,v,w,q.t[x;y;z;u;v;w;q]), 
so_apply: x[a;b;c;d;e;f;g]
Latex:
\mforall{}[T,Key:Type].  \mforall{}[m:binary\_map(T;Key)].    (bm\_firsti(m)  \mmember{}  Key  \mtimes{}  T?)
 Date html generated: 
2016_05_17-PM-01_39_30
 Last ObjectModification: 
2015_12_28-PM-08_09_49
Theory : binary-map
Home
Index