Nuprl Lemma : bm_singleton_wf
∀[T,Key:Type]. ∀[x:Key]. ∀[v:T].  (bm_singleton(x;v) ∈ binary-map(T;Key))
Proof
Definitions occuring in Statement : 
bm_singleton: bm_singleton(x;v), 
binary-map: binary-map(T;Key), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
bm_singleton: bm_singleton(x;v), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bm_cnt_prop: bm_cnt_prop(m), 
pi2: snd(t), 
bm_cnt_prop0: bm_cnt_prop0(m), 
binary_map_ind: binary_map_ind(v;E;key,value,cnt,left,right,rec1,rec2.T[key;value;cnt;left;right;rec1;rec2]), 
bm_T: bm_T(key;value;cnt;left;right), 
band: p ∧b q, 
eq_int: (i =z j), 
pi1: fst(t), 
bm_E: bm_E(), 
btrue: tt, 
true: True, 
binary-map: binary-map(T;Key), 
prop: ℙ
Latex:
\mforall{}[T,Key:Type].  \mforall{}[x:Key].  \mforall{}[v:T].    (bm\_singleton(x;v)  \mmember{}  binary-map(T;Key))
 Date html generated: 
2016_05_17-PM-01_40_29
 Last ObjectModification: 
2015_12_28-PM-08_09_37
Theory : binary-map
Home
Index